# Newton's Sums

Newton sums give us a clever and efficient way of finding the sums of roots of a polynomial raised to a power. They can also be used to derive several factoring identities.

## Basic Usage

Consider a polynomial: $\displaystyle P(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$

Let $P(x)=0$ have roots $x_1,x_2,\ldots,x_n$. Define the following sums: $\displaystyle S_1 = x_1 + x_2 + \cdots + x_n$ $\displaystyle S_2 = x_1^2 + x_2^2 + \cdots + x_n^2$ $\vdots$ $\displaystyle S_k = x_1^k + x_2^k + \cdots + x_n^k$ $\vdots$

Newton sums tell us that, $\displaystyle a_nS_1 + a_{n-1} = 0$ $\displaystyle a_nS_2 + a_{n-1}S_1 + 2a_{n-2}=0$ $\displaystyle a_nS_3 + a_{n-1}S_2 + a_{n-2}S_1 + 3a_{n-3}=0$ $\vdots$

For a more concrete example, consider the polynomial $P(x) = x^3 + 3x^2 + 4x - 8$. Let the roots of $P(x)$ be $r, s$ and $t$. Find $r^2 + s^2 + t^2$ and $r^4 + s^4 + t^4$

Newton Sums tell us that: $S_1 + 3 = 0$ $S_2 + 3S_1 + 8 = 0$ $S_3 + 3S_2 + 4S_1 - 24 = 0$ $S_4 + 3S_3 + 4S_2 - 8S_1 = 0$

Solving, first for $S_1$, and then for the other variables, yields, $S_1 = r + s + t = -3$ $S_2 = r^2 + s^2 + t^2 = 1$ $S_3 = r^3 + s^3 + t^3 = 33$ $S_4 = r^4 + s^4 + t^4 = -127$

Which gives us our desired solutions, -127 and 1.