Difference between revisions of "Normal subgroup"

(start of an article; I'll be back to finish it)
 
(Group homomorphism theorems: added some more)
Line 36: Line 36:
 
<cmath> xy \equiv ee \equiv e \pmod{\mathcal{R}}, </cmath>
 
<cmath> xy \equiv ee \equiv e \pmod{\mathcal{R}}, </cmath>
 
so <math>xy \in {\rm H}</math>.  Thus <math>{\rm H}</math> is closed under the group law on <math>{\rm G}</math>, so <math>{\rm H}</math> is a subgroup of <math>{\rm G}</math>.  Then by definition, <math>{\rm H}</math> is a normal subgroup of <math>{\rm G}</math>.  <math>\blacksquare</math>
 
so <math>xy \in {\rm H}</math>.  Thus <math>{\rm H}</math> is closed under the group law on <math>{\rm G}</math>, so <math>{\rm H}</math> is a subgroup of <math>{\rm G}</math>.  Then by definition, <math>{\rm H}</math> is a normal subgroup of <math>{\rm G}</math>.  <math>\blacksquare</math>
 +
 +
'''Theorem 2.'''  Let <math>{\rm G}</math> and <math>{\rm H}</math> be two groups; let <math>f</math> be a group homomorphism from <math>{\rm G}</math> to <math>{\rm H}</math>, and let <math>{\rm N}</math> be the kernel of <math>f</math>.
 +
* If <math>{\rm H'}</math> is a subgroup of <math>{\rm H}</math>, then the inverse image <math>f^{-1}({\rm H) = G'}</math> of <math>{\rm H'}</math> under <math>{\rm H}</math> is a subgroup of <math>{\rm G}</math>; if <math>{\rm H'}</math> is normal in <math>{\rm H}</math>, then its inverse image is normal in <math>{\rm G}</math>.  Consequently, <math>{\rm N}</math> is a normal subgroup of <math>{\rm G}</math>, and of this inverse image.  If <math>f</math> is [[surjective]], then <math>f({\rm G'}) = {\rm H'}</math>, and <math>f</math> induces an isomorphism from <math>{\rm G'/N}</math> to <math>{\rm H'}</math>.<br>
 +
* If <math>{\rm G'}</math> is a subgroup of <math>{\rm G}</math>, then <math>f({\rm G'})</math> is a subgroup of <math>{\rm H}</math>; if <math>{\rm G'}</math> is normal in <math>{\rm G}</math>, then <math>f({\rm G'})</math> is normal in <math>f({\rm G})</math>.  In particular, if <math>f</math> is surjective, then <math>f({\rm G'})</math> is normal in <math>{\rm H}</math>.  The inverse image of <math>f({\rm G'})</math> under <math>f</math> is <math>\rm G'N = NG'</math>.
 +
 +
''Proof.''  For the first part, suppose <math>a,b</math> are elements of <math>{\rm G'}</math>.  Then <math>f(ab) = f(a)f(b) \in {\rm H}</math>, so <math>ab</math> is an element of <math>{\rm G'}</math>.  Hence <math>{\rm G'}</math> is a subgroup of <math>{\rm G}</math>.  If <math>{\rm H'}</math> is a normal in <math>{\rm H}</math>, then for all <math>a</math> in <math>{\rm G}</math> and all <math>b</math> in <math>{\rm G'}</math>,
 +
<cmath> f(a)f(b)f(a)^{-1} \in {\rm H'}, </cmath>
 +
so
 +
<cmath> aba^{-1} \in f^{-1}(\rm H') = G'; </cmath>
 +
thus <math>{\rm G'}</math> is normal in <math>{\rm G}</math>.  Applying this result to the trivial subgroup of <math>{\rm H}</math>, we prove that <math>{\rm N}</math> is normal in <math>{\rm G}</math>; since the trivial subgroup of <math>{\rm H}</math> is also a subgroup of <math>{\rm H'}</math>, <math>{\rm N}</math> is also a normal subgroup of <math>{\rm G'}</math>.  If <math>f</math> is surjective, then by definition <math>f(\rm G') = H'</math>.  Also, if <math>a</math> and <math>b</math> are elements of <math>{\rm G'}</math> which are congruent mod <math>{\rm N}</math>, then <math>f(ab^{-1}) = f(e)</math>, so <math>f(a) = f(b)</math>.  Thus <math>f</math> induces an isomorphism from <math>\rm G'/N</math> to <math>\rm H'</math> which is evidently a homomorphism; hence, an isomorphism.  This proves the first part of the theorem.
 +
 +
For the second part, suppose that <math>a,b</math> are elements of <math>{\rm G'}</math>.  Then
 +
<cmath> f(a)f(b) = f(ab) \in f({\rm G'}) \subseteq f(\rm G) \subseteq H, </cmath>
 +
so <math>f({\rm G'})</math> is a subgroup of <math>{\rm H}</math> and of <math>f({\rm G})</math>.  Suppose <math>{\rm G'}</math> is normal in <math>{\rm G}</math>.  If <math>x</math> is any element of <math>{\rm G}</math>, then
 +
<cmath> f(x)f(a)f(x)^{-1} = f(xax^{-1}) \in f(\rm G') , </cmath>
 +
so <math>f( \rm G')</math> is normal in <math>f(\rm G)</math>.  If <math>f</math> is surjective, then <math>f(\rm G)= H</math>, so <math>f({\rm G'})</math> is normal in <math>{\rm H}</math>.
 +
 +
Finally, suppose that <math>a</math> is an element of <math>{\rm G}</math> such that <math>f(a)</math> is an element of <math>f({\rm G'}</math>.  Then for some <math>b \in \rm G'</math>, <math>f(a) = f(b)</math>.  Hence
 +
<cmath> f(ab^{-1}) = f(a)f(b)^{-1} = f(e). </cmath>
 +
Then <math>ab^{-1} = n</math>, for some <math>n\in \rm N</math>.  Then <math>a= bn \in \rm G'N = NG'</math>.  This finishes the proof of the second part of the theorem.  <math>\blacksquare</math>
  
 
== See also ==
 
== See also ==

Revision as of 18:08, 8 May 2008

A normal subgroup ${\rm H}$ of a group ${\rm G}$ is a subgroup of ${\rm G}$ for which the relation "$xy^{-1} \in {\rm H}$" of $x$ and $y$ is compatible with the law of composition on ${\rm G}$, which in this article is written multiplicatively. The quotient group of ${\rm G}$ under this relation is often denoted ${\rm G/H}$ (said, "${\rm G}$ mod ${\rm H}$"). (Hence the notation $\mathbb{Z}/n\mathbb{Z}$ for the integers mod $n$.)

Description

Note that the relation $xy^{-1} \in {\rm H}$ is compatible with right multiplication for any subgroup ${\rm H}$: for any $a \in {\rm G}$, \[(xa)(ya)^{-1} = (xa)(a^{-1}y^{-1}) = xy^{-1} \in {\rm H}.\] On the other hand, if ${\rm H}$ is normal, then the relation must be compatible with left multiplication by any $a\in {\rm G}$. This is true if and only $xy^{-1} \in {\rm H}$ implies \[axy^{-1}a^{-1} = (ax)(ay)^{-1} \in {\rm H} .\] Since any element of ${\rm H}$ can be expressed as $xy^{-1}$, the statement "${\rm H}$ is normal in ${\rm G}$" is equivalent to the following statement:

  • For all $a\in {\rm G}$ and $g\in {\rm H}$, $aga^{-1} \in G$,

which is equivalent to both of the following statements:

  • For all $a \in {\rm G}$, $a{\rm G}a^{-1} \subseteq {\rm G}$;
  • For all $a \in {\rm G}$, $a {\rm G \subseteq G}a$.

By symmetry, the last condition can be rewritten thus:

  • For all $a \in {\rm G}$, $a {\rm G = G} a$.

Examples

In an Abelian group, every subgroup is a normal subgroup.

Every group is a normal subgroup of itself. Similarly, the trivial group is a subgroup of every group.

Consider the smallest nonabelian group, $S_3$ (the symmetric group on three elements); call its generators $x$ and $y$, with $x^3 = y^2 = (xy)^2 =e$, the identity. It has two nontrivial subgroups, the one generated by $x$ (isomorphic to $\mathbb{Z}/3\mathbb{Z}$ and the one generated by $y$ (isomorphic to $\mathbb{Z}/2\mathbb{Z}$). Of these, the second is normal but the first is not.

If ${\rm G}$ and ${\rm G'}$ are groups, and $f: {\rm G \to G'}$ is a homomorphism of groups, then the inverse image of the identity of ${\rm G'}$ under $f$, called the kernel of $f$ and denoted $\text{Ker}(f)$, is a normal subgroup of ${\rm G}$ (see the proof of theorem 1 below). In fact, this is a characterization of normal subgroups, for if ${\rm H}$ is a normal subgroup of ${\rm G}$, the kernel of the canonical homomorphism $f:{\rm G \to G/H}$ is ${\rm H}$.

Note that if ${\rm H'}$ is a normal subgroup of ${\rm H}$ and ${\rm H}$ is a normal subgroup of ${\rm G}$, ${\rm H'}$ is not necessarily a normal subgroup of ${\rm G}$.

Group homomorphism theorems

Theorem 1. An equivalence relation $\mathcal{R}(x,y)$ on elements of a group ${\rm G}$ is compatible with the group law on ${\rm G}$ if and only if it is equivalent to a relation of the form $xy^{-1} \in {\rm H}$, for some normal subgroup ${\rm H}$ of ${\rm G}$.

Proof. One direction of the theorem follows from our definition, so we prove the other, namely, that any relation $\mathcal{R}(x,y)$ compatible with the group law on ${\rm G}$ is of the form $xy^{-1} \in {\rm H}$, for a normal subgroup ${\rm H}$.

To this end, let ${\rm H}$ be the set of elements equivalent to the identity, $e$, under $\mathcal{R}$. Evidently, if $x \equiv y \pmod{\mathcal{R}}$, then $xy^{-1} \equiv e \pmod{\mathcal{R}}$, so $xy^{-1} \in {\rm H}$; the converse holds as well, so $\mathcal{R}(x,y)$ is equivalent to the statement "$xy^{-1} \in {\rm H}$". Also, for any $x,y \in {\rm H}$, \[xy \equiv ee \equiv e \pmod{\mathcal{R}},\] so $xy \in {\rm H}$. Thus ${\rm H}$ is closed under the group law on ${\rm G}$, so ${\rm H}$ is a subgroup of ${\rm G}$. Then by definition, ${\rm H}$ is a normal subgroup of ${\rm G}$. $\blacksquare$

Theorem 2. Let ${\rm G}$ and ${\rm H}$ be two groups; let $f$ be a group homomorphism from ${\rm G}$ to ${\rm H}$, and let ${\rm N}$ be the kernel of $f$.

  • If ${\rm H'}$ is a subgroup of ${\rm H}$, then the inverse image $f^{-1}({\rm H) = G'}$ of ${\rm H'}$ under ${\rm H}$ is a subgroup of ${\rm G}$; if ${\rm H'}$ is normal in ${\rm H}$, then its inverse image is normal in ${\rm G}$. Consequently, ${\rm N}$ is a normal subgroup of ${\rm G}$, and of this inverse image. If $f$ is surjective, then $f({\rm G'}) = {\rm H'}$, and $f$ induces an isomorphism from ${\rm G'/N}$ to ${\rm H'}$.
  • If ${\rm G'}$ is a subgroup of ${\rm G}$, then $f({\rm G'})$ is a subgroup of ${\rm H}$; if ${\rm G'}$ is normal in ${\rm G}$, then $f({\rm G'})$ is normal in $f({\rm G})$. In particular, if $f$ is surjective, then $f({\rm G'})$ is normal in ${\rm H}$. The inverse image of $f({\rm G'})$ under $f$ is $\rm G'N = NG'$.

Proof. For the first part, suppose $a,b$ are elements of ${\rm G'}$. Then $f(ab) = f(a)f(b) \in {\rm H}$, so $ab$ is an element of ${\rm G'}$. Hence ${\rm G'}$ is a subgroup of ${\rm G}$. If ${\rm H'}$ is a normal in ${\rm H}$, then for all $a$ in ${\rm G}$ and all $b$ in ${\rm G'}$, \[f(a)f(b)f(a)^{-1} \in {\rm H'},\] so \[aba^{-1} \in f^{-1}(\rm H') = G';\] thus ${\rm G'}$ is normal in ${\rm G}$. Applying this result to the trivial subgroup of ${\rm H}$, we prove that ${\rm N}$ is normal in ${\rm G}$; since the trivial subgroup of ${\rm H}$ is also a subgroup of ${\rm H'}$, ${\rm N}$ is also a normal subgroup of ${\rm G'}$. If $f$ is surjective, then by definition $f(\rm G') = H'$. Also, if $a$ and $b$ are elements of ${\rm G'}$ which are congruent mod ${\rm N}$, then $f(ab^{-1}) = f(e)$, so $f(a) = f(b)$. Thus $f$ induces an isomorphism from $\rm G'/N$ to $\rm H'$ which is evidently a homomorphism; hence, an isomorphism. This proves the first part of the theorem.

For the second part, suppose that $a,b$ are elements of ${\rm G'}$. Then \[f(a)f(b) = f(ab) \in f({\rm G'}) \subseteq f(\rm G) \subseteq H,\] so $f({\rm G'})$ is a subgroup of ${\rm H}$ and of $f({\rm G})$. Suppose ${\rm G'}$ is normal in ${\rm G}$. If $x$ is any element of ${\rm G}$, then \[f(x)f(a)f(x)^{-1} = f(xax^{-1}) \in f(\rm G') ,\] so $f( \rm G')$ is normal in $f(\rm G)$. If $f$ is surjective, then $f(\rm G)= H$, so $f({\rm G'})$ is normal in ${\rm H}$.

Finally, suppose that $a$ is an element of ${\rm G}$ such that $f(a)$ is an element of $f({\rm G'}$. Then for some $b \in \rm G'$, $f(a) = f(b)$. Hence \[f(ab^{-1}) = f(a)f(b)^{-1} = f(e).\] Then $ab^{-1} = n$, for some $n\in \rm N$. Then $a= bn \in \rm G'N = NG'$. This finishes the proof of the second part of the theorem. $\blacksquare$

See also