Difference between revisions of "Pascal's triangle"

(See Also)
(Fibonacci numbers)
(18 intermediate revisions by 11 users not shown)
Line 1: Line 1:
<div class="thumb tright">
+
'''Pascal's triangle''' is a triangle which contains the values from the [[binomial expansion]]; its various properties play a large role in [[combinatorics]].
<div>
 
<div>
 
<table border="0">
 
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
 
<tr><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></tr>
 
<tr><td></td><td></td><td></td><td></td><td>1</td><td></td><td>2</td><td></td><td>1</td><td></td><td></td><td></td><td></td></tr>
 
<tr><td></td><td></td><td></td><td>1</td><td></td><td>3</td><td></td><td>3</td><td></td><td>1</td><td></td><td></td><td></td></tr>
 
<tr><td></td><td></td><td>1</td><td></td><td>4</td><td></td><td>6</td><td></td><td>4</td><td></td><td>1</td><td></td><td></td></tr>
 
<tr><td></td><td>1</td><td></td><td>5</td><td></td><td>10</td><td></td><td>10</td><td></td><td>5</td><td></td><td>1</td><td></td></tr>
 
<tr><td>1</td><td></td><td>6</td><td></td><td>15</td><td></td><td>20</td><td></td><td>15</td><td></td><td>6</td><td></td><td>1</td></tr>
 
</table>
 
</div>
 
<div class="thumbcaption">First few rows of Pascal's Triangle</div>
 
</div>
 
</div>
 
 
 
'''Pascal's Triangle''' is a triangle which contains the values from the [[binomial expansion]]; its various properties play a large role in [[combinatorics]].
 
  
 
== Properties ==
 
== Properties ==
  
 
=== Binomial coefficients ===
 
=== Binomial coefficients ===
Pascal's Triangle is defined such that the number in row <math>n</math> and column <math>k</math> is <math>\displaystyle{n\choose k}</math>.  For this reason, [[mathematical convention|convention]] holds that both row numbers and column numbers start with 0.  Thus, the apex of the triangle is row 0, and the first number in each row is column 0.  As an example, the number in row 4, column 2 is <math>\displaystyle{4 \choose 2} = 6</math>.  Pascal's Triangle thus can serve as a "look-up table" for binomial expansion values.  Also, many of the characteristics of Pascal's Triangle are derived from [[combinatorial identities]]; for example, because <math>\sum_{k=0}^{n}{{n \choose k}}=2^n</math>, the sum of the values on row <math>n</math> of Pascal's Triangle is <math>2^n</math>.
+
[[Image:First 9 rows of pascal's.png|frame|right|200px|These are the first nine rows of Pascal's Triangle.]] Pascal's Triangle is defined such that the number in row <math>n</math> and column <math>k</math> is <math>{n\choose k}</math>.  For this reason, [[mathematical convention|convention]] holds that both row numbers and column numbers start with 0.  Thus, the apex of the triangle is row 0, and the first number in each row is column 0.  As an example, the number in row 4, column 2 is <math>{4 \choose 2} = 6</math>.  Pascal's Triangle thus can serve as a "look-up table" for binomial expansion values.  Also, many of the characteristics of Pascal's Triangle are derived from [[combinatorial identities]]; for example, because <math>\sum_{k=0}^{n}{{n \choose k}}=2^n</math>, the sum of the values on row <math>n</math> of Pascal's Triangle is <math>2^n</math>.
  
 
=== Sum of previous values ===
 
=== Sum of previous values ===
  
<div class="thumb tright">
+
One of the best known features of Pascal's Triangle is derived from the combinatorics identity <math>{n \choose k}+{n \choose k+1} = {n+1 \choose k+1}</math>.  Thus, any number in the interior of Pascal's Triangle will be the sum of the two numbers appearing above it.  For example, <math>{5 \choose 1}+{5 \choose 2} = 5 + 10 = 15 = {6 \choose 2}</math>.  This property allows the easy creation of the first few rows of Pascal's Triangle without having to calculate out each binomial expansion.
<div>
 
<div>
 
<table border="0">
 
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
 
<tr><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></tr>
 
<tr><td></td><td></td><td></td><td></td><td>1</td><td></td><td>2</td><td></td><td>1</td><td></td><td></td><td></td><td></td></tr>
 
<tr><td></td><td></td><td></td><td>1</td><td></td><td>3</td><td></td><td>3</td><td></td><td>1</td><td></td><td></td><td></td></tr>
 
<tr><td></td><td></td><td>1</td><td></td><td>4</td><td></td><td>6</td><td></td><td>4</td><td></td><td>1</td><td></td><td></td></tr>
 
<tr><td></td><td>1</td><td></td><td>'''5'''</td><td></td><td>'''10'''</td><td></td><td>10</td><td></td><td>5</td><td></td><td>1</td><td></td></tr>
 
<tr><td>1</td><td></td><td>6</td><td></td><td>'''15'''</td><td></td><td>20</td><td></td><td>15</td><td></td><td>6</td><td></td><td>1</td></tr>
 
</table>
 
</div>
 
<div class="thumbcaption">Sum of previous values</div>
 
</div>
 
</div>
 
 
 
One of the best known features of Pascal's Triangle is derived from the combinatorics identity <math>{n \choose k}+{n \choose k+1} = {n+1 \choose k+1}</math>.  Thus, any number in the interior of Pascal's Triangle will be the sum of the two numbers appearing above it.  For example, <math>{5 \choose 1}+{5 \choose 2} = 5 + 10 = 15 = {6 \choose 2}</math>, as shown in the diagram.  This property allows the easy creation of the first few rows of Pascal's Triangle without having to calculate out each binomial expansion.
 
  
 
=== Fibonacci numbers ===
 
=== Fibonacci numbers ===
  
<div class="thumb tright">
+
The [[Fibonacci sequence|Fibonacci numbers]] appear in Pascal's Triangle along the "shallow diagonals."  That is, <math>{n \choose 0}+{n-1 \choose 1}+\cdots+{n-\left\lfloor\frac{n}{2}\right\rfloor \choose \left\lfloor \frac{n}{2}\right \rfloor} = F(n+1)</math>, where <math>F(n)</math> is the Fibonacci sequence.  For example, <math>{6 \choose 0}+{5 \choose 1}+{4 \choose 2}+{3 \choose 3} = 1 + 5 + 6 + 1 = 13 = F(7)</math>.  A "shallow diagonal" is plotted in the diagram.
<div>
 
<div>
 
<table border="0">
 
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
 
<tr><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></tr>
 
<tr><td></td><td></td><td></td><td></td><td>1</td><td></td><td>2</td><td></td><td>1</td><td></td><td></td><td></td><td></td></tr>
 
<tr><td></td><td></td><td></td><td>1</td><td></td><td>3</td><td></td><td>3</td><td></td><td>'''1'''</td><td></td><td></td><td></td></tr>
 
<tr><td></td><td></td><td>1</td><td></td><td>4</td><td></td><td>'''6'''</td><td></td><td>4</td><td></td><td>1</td><td></td><td></td></tr>
 
<tr><td></td><td>1</td><td></td><td>'''5'''</td><td></td><td>10</td><td></td><td>10</td><td></td><td>5</td><td></td><td>1</td><td></td></tr>
 
<tr><td>'''1'''</td><td></td><td>6</td><td></td><td>15</td><td></td><td>20</td><td></td><td>15</td><td></td><td>6</td><td></td><td>1</td></tr>
 
</table>
 
</div>
 
<div class="thumbcaption">Shallow diagonals</div>
 
</div>
 
</div>
 
 
 
The [[Fibonacci sequence|Fibonacci numbers]] appear in Pascal's Triangle along the "shallow diagonals."  That is, <math>{n \choose 0}+{n-1 \choose 1}+\cdots+{n-\lfloor\frac{n}{2}\rfloor \choose \lfloor \frac{n}{2} \rfloor} = F(n+1)</math>, where <math>F(n)</math> is the Fibonacci sequence.  For example, <math>{6 \choose 0}+{5 \choose 1}+{4 \choose 2}+{3 \choose 3} = 1 + 5 + 6 + 2 = 13 = F(7)</math>.  A "shallow diagonal" is plotted in the diagram.
 
  
 
=== Hockey-stick theorem ===
 
=== Hockey-stick theorem ===
  
<div class="thumb tright">
+
The [[Combinatorial identity#Hockey-Stick Identity|Hockey-stick theorem]] states:
<div>
+
<math>{n \choose 0}+{n+1 \choose 1}+\cdots+{n+k \choose k} = {n+k+1 \choose k}</math>.  Its name is due to the "hockey-stick" which appears when the numbers are plotted on Pascal's Triangle, as shown in the representation of the theorem below (where <math>n=2</math> and <math>k=3</math>).
<div>
 
<table border="0">
 
<tr><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
 
<tr><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td></tr>
 
<tr><td></td><td></td><td></td><td></td><td>'''1'''</td><td></td><td>2</td><td></td><td>1</td><td></td><td></td><td></td><td></td></tr>
 
<tr><td></td><td></td><td></td><td>1</td><td></td><td>'''3'''</td><td></td><td>3</td><td></td><td>1</td><td></td><td></td><td></td></tr>
 
<tr><td></td><td></td><td>1</td><td></td><td>4</td><td></td><td>'''6'''</td><td></td><td>4</td><td></td><td>1</td><td></td><td></td></tr>
 
<tr><td></td><td>1</td><td></td><td>5</td><td></td><td>10</td><td></td><td>'''10'''</td><td></td><td>5</td><td></td><td>1</td><td></td></tr>
 
<tr><td>1</td><td></td><td>6</td><td></td><td>15</td><td></td><td>'''20'''</td><td></td><td>15</td><td></td><td>6</td><td></td><td>1</td></tr>
 
</table>
 
</div>
 
<div class="thumbcaption">Hockey-stick Theorem</div>
 
</div>
 
</div>
 
  
The [[Hockey-stick theorem]] states:
+
<asy>
<math>{n \choose 0}+{n+1 \choose 1}+\cdots+{n+k \choose k} = {n+k+1 \choose k}</math>.  Its name is due to the "hockey-stick" which appears when the numbers are plotted on Pascal's Triangle, as shown in the representation of the theorem to the right (where <math>n=2</math> and <math>k=3</math>).
+
int chew(int n,int r){
 +
int res=1;
 +
for(int i=0;i<r;++i){
 +
  res=quotient(res*(n-i),i+1);
 +
  }
 +
return res;
 +
}
 +
for(int n=0;n<9;++n){
 +
for(int i=0;i<=n;++i){
 +
  if((i==2 && n<6)||(i==3 && n==6)){
 +
  if(n==6){label(string(chew(n,i)),(11+n/2-i,-n),p=red+2.5);}
 +
  else{label(string(chew(n,i)),(11+n/2-i,-n),p=blue+2);}
 +
  }
 +
  else{
 +
  label(string(chew(n,i)),(11+n/2-i,-n));
 +
  }
 +
  }
 +
}
 +
</asy>
  
 
=== Number Parity ===
 
=== Number Parity ===
Consider writing the row number <math>n</math> in [[base number | base]] two as <math>({n})_{10} = {(a_xa_{x-1} \cdots a_1a_0)}_2</math><math> = a_x 2^x+a_{x-1} 2^{x-1}+\cdots+a_1 2^1+a_0 2^0</math>.  The number in the <math>k</math>th column of the <math>n</math>th row in Pascal's Triangle is [[odd integer | odd]] if and only if <math>k</math> can be expressed as the sum of some <math>a_i 2^i</math>.  For example, <math>(9)_{10} = {(1001)}_{2} = 2^{3}+2^{0}</math>.  Thus, the only 4 odd numbers in the 9th row will be in the <math>{(0000)}_{2} = 0</math>th, <math>{(0001)}_{2} = 2^0 = 1</math>st, <math>{(1000)}_{2} = 2^3 = 8</math>th, and <math>{(1001)}_{2} = 2^3+2^0 = 9</math>th columns.  Additionally, marking each of these odd numbers in Pascal's Triangle creates a [[Sierpinski triangle]].[[Image:Sierpinski.jpg]]
+
Consider writing the row number <math>n</math> in [[base number | base]] two as <math>({n})_{10} = {(a_xa_{x-1} \cdots a_1a_0)}_2</math><math> = a_x 2^x+a_{x-1} 2^{x-1}+\cdots+a_1 2^1+a_0 2^0</math>.  The number in the <math>k</math>th column of the <math>n</math>th row in Pascal's Triangle is [[odd integer | odd]] if and only if <math>k</math> can be expressed as the sum of some <math>a_i 2^i</math>.  For example, <math>(9)_{10} = {(1001)}_{2} = 2^{3}+2^{0}</math>.  Thus, the only 4 odd numbers in the 9th row will be in the <math>{(0000)}_{2} = 0</math>th, <math>{(0001)}_{2} = 2^0 = 1</math>st, <math>{(1000)}_{2} = 2^3 = 8</math>th, and <math>{(1001)}_{2} = 2^3+2^0 = 9</math>th columns.  Additionally, marking each of these odd numbers in Pascal's Triangle creates a [[Sierpinski triangle]].
 +
 
 +
[[Image:Sierpinski.jpg]]
 +
 
 +
=== Patterns and Properties of the Pascal's Triangle ===
 +
 
 +
==== Rows ====
 +
The zeroth row has a sum of <math> 1=2^0 </math>. The first row has a sum of <math> 2=2^1 </math>. The <math>n^{th} </math> row has a sum of <math> 2^n </math>
 +
 
 +
=== Diagonals ===
 +
 
 +
The 1st downward diagonal is a row of 1's, the 2nd downward diagonal on each side consists of the [[natural numbers]], the 3rd diagonal the [[triangular numbers]], and the 4th the [[pyramidal numbers]].
  
 
==See Also==
 
==See Also==
 
*[[Binomial theorem]]
 
*[[Binomial theorem]]
 
*[[Pascal Triangle Related Problems]]
 
*[[Pascal Triangle Related Problems]]
 +
 +
[[Category:Combinatorics]]
 +
[[Category:Definition]]

Revision as of 13:47, 11 March 2019

Pascal's triangle is a triangle which contains the values from the binomial expansion; its various properties play a large role in combinatorics.

Properties

Binomial coefficients

These are the first nine rows of Pascal's Triangle.

Pascal's Triangle is defined such that the number in row $n$ and column $k$ is ${n\choose k}$. For this reason, convention holds that both row numbers and column numbers start with 0. Thus, the apex of the triangle is row 0, and the first number in each row is column 0. As an example, the number in row 4, column 2 is ${4 \choose 2} = 6$. Pascal's Triangle thus can serve as a "look-up table" for binomial expansion values. Also, many of the characteristics of Pascal's Triangle are derived from combinatorial identities; for example, because $\sum_{k=0}^{n}{{n \choose k}}=2^n$, the sum of the values on row $n$ of Pascal's Triangle is $2^n$.

Sum of previous values

One of the best known features of Pascal's Triangle is derived from the combinatorics identity ${n \choose k}+{n \choose k+1} = {n+1 \choose k+1}$. Thus, any number in the interior of Pascal's Triangle will be the sum of the two numbers appearing above it. For example, ${5 \choose 1}+{5 \choose 2} = 5 + 10 = 15 = {6 \choose 2}$. This property allows the easy creation of the first few rows of Pascal's Triangle without having to calculate out each binomial expansion.

Fibonacci numbers

The Fibonacci numbers appear in Pascal's Triangle along the "shallow diagonals." That is, ${n \choose 0}+{n-1 \choose 1}+\cdots+{n-\left\lfloor\frac{n}{2}\right\rfloor \choose \left\lfloor \frac{n}{2}\right \rfloor} = F(n+1)$, where $F(n)$ is the Fibonacci sequence. For example, ${6 \choose 0}+{5 \choose 1}+{4 \choose 2}+{3 \choose 3} = 1 + 5 + 6 + 1 = 13 = F(7)$. A "shallow diagonal" is plotted in the diagram.

Hockey-stick theorem

The Hockey-stick theorem states: ${n \choose 0}+{n+1 \choose 1}+\cdots+{n+k \choose k} = {n+k+1 \choose k}$. Its name is due to the "hockey-stick" which appears when the numbers are plotted on Pascal's Triangle, as shown in the representation of the theorem below (where $n=2$ and $k=3$).

[asy] int chew(int n,int r){  int res=1;  for(int i=0;i<r;++i){   res=quotient(res*(n-i),i+1);   }  return res;  } for(int n=0;n<9;++n){  for(int i=0;i<=n;++i){   if((i==2 && n<6)||(i==3 && n==6)){    if(n==6){label(string(chew(n,i)),(11+n/2-i,-n),p=red+2.5);}    else{label(string(chew(n,i)),(11+n/2-i,-n),p=blue+2);}    }   else{    label(string(chew(n,i)),(11+n/2-i,-n));    }   }  } [/asy]

Number Parity

Consider writing the row number $n$ in base two as $({n})_{10} = {(a_xa_{x-1} \cdots a_1a_0)}_2$$= a_x 2^x+a_{x-1} 2^{x-1}+\cdots+a_1 2^1+a_0 2^0$. The number in the $k$th column of the $n$th row in Pascal's Triangle is odd if and only if $k$ can be expressed as the sum of some $a_i 2^i$. For example, $(9)_{10} = {(1001)}_{2} = 2^{3}+2^{0}$. Thus, the only 4 odd numbers in the 9th row will be in the ${(0000)}_{2} = 0$th, ${(0001)}_{2} = 2^0 = 1$st, ${(1000)}_{2} = 2^3 = 8$th, and ${(1001)}_{2} = 2^3+2^0 = 9$th columns. Additionally, marking each of these odd numbers in Pascal's Triangle creates a Sierpinski triangle.

Sierpinski.jpg

Patterns and Properties of the Pascal's Triangle

Rows

The zeroth row has a sum of $1=2^0$. The first row has a sum of $2=2^1$. The $n^{th}$ row has a sum of $2^n$

Diagonals

The 1st downward diagonal is a row of 1's, the 2nd downward diagonal on each side consists of the natural numbers, the 3rd diagonal the triangular numbers, and the 4th the pyramidal numbers.

See Also