Difference between revisions of "Quadratic Reciprocity Theorem"

(Statement)
 
(4 intermediate revisions by the same user not shown)
Line 9: Line 9:
 
<math>\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}.</math>
 
<math>\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}.</math>
  
 +
*Note that <math>\left(\frac{p}{q}\right)</math> is not a fraction. It is the Legendre notation of quadratic residuary.
  
 
==See Also==
 
==See Also==
 
[[Category:Number theory]]
 
[[Category:Number theory]]
 
[[Category:Theorems]]
 
[[Category:Theorems]]
 +
[[Quadratic Residues |Quadratic Residues]]

Latest revision as of 23:21, 5 April 2021

Quadratic reciprocity is a classic result of number theory.
It is one of the most important theorems in the study of quadratic residues.

Statement

It states that $\left(\frac{p}{q}\right)= \left(\frac{q}{p}\right)$ for primes $p$ and $q$ greater than $2$ where both are not of the form $4n+3$ for some integer $n$.
If both $p$ and $q$ are of the form $4n+3$, then $\left(\frac{p}{q}\right)= -\left(\frac{q}{p}\right).$

Another way to state this is:
$\left(\frac{p}{q}\right)\left(\frac{q}{p}\right)=(-1)^{\frac{p-1}{2}\frac{q-1}{2}}.$

  • Note that $\left(\frac{p}{q}\right)$ is not a fraction. It is the Legendre notation of quadratic residuary.

See Also

Quadratic Residues