Difference between revisions of "Quadratic equation"

(Can anyone write the derivation of the Quad Formula without sounding boring? Thank you.)
 
(See Also)
(20 intermediate revisions by 10 users not shown)
Line 1: Line 1:
=== Quadratic Equations ===
+
A '''quadratic equation''' in one [[variable]] is an [[equation]] of the form <math> {a}{x}^2+{b}{x}+{c}=0</math>, where <math>a</math>, <math>b</math> and <math>c</math> are [[constant]]s (that is, they do not depend on <math>x</math>) and <math>x</math> is the unknown variable. Quadratic equations are solved using one of three main strategies: [[factoring]], [[completing the square]] and the [[quadratic formula]].
 
 
A quadratic equation is an equation of form <math>ax^2+bx+c=0</math>. a, b, and c are constants, and x is the unknown variable. Quadratic Equations are solved using 3 main strategies, factoring, completing the square, and the quadratic formula.
 
  
 
=== Factoring ===
 
=== Factoring ===
 +
The purpose of factoring is to turn a general quadratic into a product of [[binomial]]s. This is easier to illustrate than to describe.
  
The purpose of factoring is to turn a general quadratic into a product of binomials. This is easier to illustrate than to describle
+
Example: Solve the equation <math>x^2-3x+2=0</math> for <math>x</math>. Note: This is different for all quadratics; we cleverly chose this so that it has common factors.
  
Example: Solve the equation <math>x^2-3x+2=0</math> for x.
 
 
Solution: <math>x^2-3x+2=0</math>
 
Solution: <math>x^2-3x+2=0</math>
First we expand the middle term. This is different for all quadratics. We cleverly choose this so that it has common factors. We now have <math>x^2-x-2x+2=0</math>
 
Next, we factor out our common terms to get: <math>x(x-1)-2(x-1)=0</math>.
 
We can now factor the (x-1) term to get: <math>(x-1)(x-2)=0</math>. By a well know theorem, Either <math> (x-1) </math> or <math> (x-2) </math> equals zero. We now have the pair or equations x-1=0, or x-2=0. These give us answers of x=1 or x-2. Plugging these back into the original equation, we find that both of these work! We are done.
 
  
=== Completing the Square ===
+
First, we expand the middle term: <math>x^2-x-2x+2=0</math>.
[[ Completing the Square ]]
+
 
 +
Next, we factor out our common terms to get <math>x(x-1)-2(x-1)=0</math>.
 +
 
 +
We can now factor the <math>(x-1)</math> term to get <math>(x-1)(x-2)=0</math>. By the zero-product property, either <math> (x-1) </math> or <math> (x-2) </math> equals zero.
 +
 
 +
We now have the pair of equations <math>x-1=0</math> and <math>x-2=0</math>. These give us the answers <math>x=1</math> and <math>x=2</math>, which can also be written as <math>x=\{1,\,2\}</math>. Plugging these back into the original equation, we find that both of these work! We are done.
 +
 
 +
=== Completing the square ===
 +
[[ Completing the square ]]
  
 
=== Quadratic Formula ===
 
=== Quadratic Formula ===
 +
See [[Quadratic Formula]].
 +
 +
== See Also ==
 +
* [[Discriminant]]
 +
* [[Vieta's Formulas]]
 +
* [[Quadratic Inequality]]
 +
* [[Factoring Quadratics]]
 +
 +
[[Category:Definition]]
 +
[[Category:Algebra]]

Revision as of 17:56, 8 December 2019

A quadratic equation in one variable is an equation of the form ${a}{x}^2+{b}{x}+{c}=0$, where $a$, $b$ and $c$ are constants (that is, they do not depend on $x$) and $x$ is the unknown variable. Quadratic equations are solved using one of three main strategies: factoring, completing the square and the quadratic formula.

Factoring

The purpose of factoring is to turn a general quadratic into a product of binomials. This is easier to illustrate than to describe.

Example: Solve the equation $x^2-3x+2=0$ for $x$. Note: This is different for all quadratics; we cleverly chose this so that it has common factors.

Solution: $x^2-3x+2=0$

First, we expand the middle term: $x^2-x-2x+2=0$.

Next, we factor out our common terms to get $x(x-1)-2(x-1)=0$.

We can now factor the $(x-1)$ term to get $(x-1)(x-2)=0$. By the zero-product property, either $(x-1)$ or $(x-2)$ equals zero.

We now have the pair of equations $x-1=0$ and $x-2=0$. These give us the answers $x=1$ and $x=2$, which can also be written as $x=\{1,\,2\}$. Plugging these back into the original equation, we find that both of these work! We are done.

Completing the square

Completing the square

Quadratic Formula

See Quadratic Formula.

See Also