Difference between revisions of "Quartic Equation"

m (I don't think the "roots rewritten" subsection is necessary.)
m (Formatting)
Line 97: Line 97:
  
 
==External Links==
 
==External Links==
Quora: https://www.quora.com/What-is-the-general-formula-for-quartic-equation
 
  
Wikipedia: https://en.wikipedia.org/wiki/Quartic_function
+
===Quora===
 +
https://www.quora.com/What-is-the-general-formula-for-quartic-equation
 +
 
 +
===Wikipedia
 +
https://en.wikipedia.org/wiki/Quartic_function

Revision as of 09:30, 23 August 2022

A quartic equation is an algebraic equation of the form

$ax^4 + bx^3 + cx^2 + dx + e = 0.$

These types of equations are extremely hard to solve; however, there are very clever methods for solving them by bringing it down to a cubic. I am going to list the simplest of the five.

Solving Quartic Equations

Look in the "TLDR" subsections for the final results of each step.

Bringing it down to a depressed quartic

Start with the equation $ax^4 + bx^3 + cx^2 + dx + e = 0.$ Divide both sides by a: $x^4 + \frac{b}{a}x^3 + \frac{c}{a}x^2 + \frac{d}{a}x + \frac{e}{a} = 0$ Now, convert to a depressed quartic by substituting $x = y - \frac{b}{4a}$. We now have:

$\left(y - \frac{b}{4a}\right)^4 + \frac{b}{a}\left(y - \frac{b}{4a}\right)^3 + \frac{c}{a}\left(y - \frac{b}{4a}\right)^2 + \frac{d}{a}\left(y - \frac{b}{4a}\right) + \frac{e}{a} = 0$

$y^4 - \left(\frac{b}{a}\right)y^3 + \left(\frac{3b^2}{8a^2}\right)y^2 - \left(\frac{b^3}{16a^3}\right)y + \left(\frac{b^4}{256a^4}\right) + \left(\frac{b}{a}\right)y^3 - \left(\frac{6b^2}{8a^2}\right)y^2 + \left(\frac{3b^3}{16a^3}\right)y - \left(\frac{4b^4}{256a^4}\right) + \left(\frac{8ac}{8a^2}\right)y^2 - \left(\frac{8abc}{16a^3}\right)y$ $+ \left(\frac{16ab^2c}{256a^4}\right) + \left(\frac{16a^2d}{16a^3}\right)y - \left(\frac{64a^2bd}{256a^4}\right) + \left(\frac{256a^3e}{256a^4}\right) = 0$

$y^4 + \left(\frac{8ac - 3b^2}{8a^2}\right)y^2 + \left(\frac{b^3 - 4abc + 8a^2d}{8a^3}\right)y + \left(\frac{-3b^4 + 16ab^2c - 64a^2bd + 256a^3e}{256a^4}\right) = 0$

Now we have a depressed quartic: $y^4 + py^2 + qy + r = 0$ where $p = \left(\frac{8ac - 3b^2}{8a^2}\right)$, $q = \left(\frac{b^3 - 4abc + 8a^2d}{8a^3}\right)$ and $r = \left(\frac{-3b^4 + 16ab^2c - 64a^2bd + 256a^3e}{256a^4}\right)$.

TLDR

The new depressed quartic is $y^4 + py^2 + qy + r = 0$ where $p = \left(\frac{8ac - 3b^2}{8a^2}\right)$, $q = \left(\frac{b^3 - 4abc + 8a^2d}{8a^3}\right)$ and $r = \left(\frac{-3b^4 + 16ab^2c - 64a^2bd + 256a^3e}{256a^4}\right)$.

Descartes' Solution

René Descartes thought of factoring the depressed quartic into two quadratics: $y^4 + py^2 + qy + r = (y^2 + sy + t)(y^2 + uy + v)$. Expanding the right-hand side gives $y^4 + sy^3 + ty^2 + uy^3 + suy^2 + tuy + vy^2 + svy + tv$, simplifying to $y^4 + (s + u)y^3 + (t + v + su)y^2 + (sv + tu)y + tv$. Equating coefficients gives the following system of equations:

$\begin{cases} s + u = 0 \text{ since the } y^3 \text{ term is 0} \\ p = t + v + su \\ q = sv + tu \\ r = tv \end{cases}$

from which we derive $s = -u$ and substitute this:

$\begin{cases} p + u^2 = t + v \\ q = u(t - v) \\ r = tv \end{cases}$

Now eliminate $t$ and $v$ by doing the following:

\begin{align*} u^2(p + u^2)^2 - q^2 &=  u^2(t + v)^2 - u^2(t - v)^2 \text{ by substitution}\\ &= u^2((t + v)^2 - (t - v)^2) \text{ by factoring}\\ &= u^2(t + v + t - v)(t + v - t + v) \text{ by difference of squares}\\ &= u^2(2t)(2v) \\ &= 4u^2tv \\ &= 4u^2r \end{align*}

Substitute $U = u^2$ to get

$U(p + U)^2 - q^2 = 4Ur$

$U^3 + 2pU^2 + (p^2 - 4r)U - q^2 = 0$

This can be solved via the cubic formula. After $U$ is obtained, we have $u = \sqrt{U}$ and can now solve for $t$ and $v$:

Solve for t and v

We have the system of equations $\begin{cases} p + u^2 = t + v \\ \frac{q}{u} = t - v \end{cases}$. We can obtain $p + u^2 + \frac{q}{u} = 2t$ and $t = \frac{u^3 + pu + q}{2u}$. Similarly, $v = t - \frac{q}{u}$.

Now that both factors have been obtained, we can solve for $y$ by using the quadratic formula on each of the factors. The two solutions for the quadratics combined form the four solutions of the depressed quartic; subtract $\frac{b}{4a}$ to each of the solutions to obtain the solutions to the original quartic.

TLDR

$U$ is a nonzero solution to the cubic $U^3 + 2pU^2 + (p^2 - 4r)U - q^2, u = \sqrt{U}, s = -u, t = \frac{u^3 + pu + q}{2u}, v = t - \frac{q}{u}$ (or subtract the two equations to obtain $v = \frac{u^3 + pu - q}{2u}$). The solutions to the depressed quartic are $\frac{-u \pm \sqrt{u^2 - 4v}}{2} \text{ and } \frac{-s \pm \sqrt{s^2 - 4t}}{2},$ subtract $\frac{b}{4a}$ from each of the roots to obtain the roots of the original quartic.

The Quartic Formula

Be prepared: This formula is really complicated.

I also don't suggest memorizing this formula, since it is too complex to do so. Even if you can, it is very hard to use. You should be better off if you follow the process and break everything into easy steps.

We are going to keep using $p, q, r$ in the derivation; we are going to substitute them into the final formula.

So, we start with $y^4 + py^2 + qy + r = 0$.

We factor it into two quadratics: $(y^2 + sy + t)(y^2 + uy + v)$.

We have obtained $u^2(p + u^2)^2 - q^2 = 4u^2r$. With $U$ being a solution to $U^3 + 2pU^2 + (p^2 - 4r)U - q^2$, $U =$, according to the cubic formula,

${\tiny{\sqrt[3 \text{ }]{\frac{\left(\frac{2p^3 - 72pr + 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right)}{27}}}{2}} - \sqrt[3 \text{ }]{\frac{\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr + 27c}{27}\right)}{27}}}{2}} - \frac{2p}{3}}}$

Already messy. Therefore, ${\tiny{u = \sqrt{\sqrt[3 \text{ }]{\frac{\left(\frac{2p^3 - 72pr + 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right)}{27}}}{2}} - \sqrt[3 \text{ }]{\frac{\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr + 27c}{27}\right)}{27}}}{2}} - \frac{2p}{3}}}}$

${\tiny{s = \sqrt{\sqrt[3 \text{ }]{\frac{\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right)}{27}}}{2}} - \sqrt[3 \text{ }]{\frac{\left(\frac{2p^3 - 72pr + 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{2p^3 - 72pr + 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr + 27c}{27}\right)}{27}}}{2}} - \frac{2p}{3}}}}$

$t = \tiny{\sqrt[3 \text{ }]{\frac{\left(\frac{2p^3 - 72pr + 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right)}{27}}}{2}} - \sqrt[3 \text{ }]{\frac{\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr + 27c}{27}\right)}{27}}}{2}} + \frac{p}{3}}  + \tiny{\frac{q}{{\tiny{\sqrt{\sqrt[3 \text{ }]{\frac{\left(\frac{2p^3 - 72pr + 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right)}{27}}}{2}} - \sqrt[3 \text{ }]{\frac{\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr + 27c}{27}\right)}{27}}}{2}} - \frac{2p}{3}}}}}}$

$v = \tiny{\sqrt[3 \text{ }]{\frac{\left(\frac{2p^3 - 72pr + 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right)}{27}}}{2}} - \sqrt[3 \text{ }]{\frac{\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr + 27c}{27}\right)}{27}}}{2}} + \frac{p}{3}} - \tiny{\frac{q}{{\tiny{\sqrt{\sqrt[3 \text{ }]{\frac{\left(\frac{2p^3 - 72pr + 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right)}{27}}}{2}} - \sqrt[3 \text{ }]{\frac{\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr + 27c}{27}\right)}{27}}}{2}} - \frac{2p}{3}}}}}}$


$x = \frac{\pm_1 {\tiny{\sqrt{\sqrt[3 \text{ }]{\frac{\left(\frac{2p^3 - 72pr + 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right)}{27}}}{2}} - \sqrt[3 \text{ }]{\frac{\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr + 27c}{27}\right)}{27}}}{2}} - \frac{2p}{3}}}}\pm_2\sqrt{{\tiny{\sqrt[3 \text{ }]{\frac{\left(\frac{2p^3 - 72pr + 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right)}{27}}}{2}} - \sqrt[3 \text{ }]{\frac{\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr + 27c}{27}\right)}{27}}}{2}} - \frac{2p}{3}}} + 2p - \frac{2q}{{\tiny{\sqrt{\sqrt[3 \text{ }]{\frac{\left(\frac{2p^3 - 72pr + 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right)}{27}}}{2}} - \sqrt[3 \text{ }]{\frac{\left(\frac{-2p^3 + 72pr - 27q^2}{27}\right) \pm \sqrt{\frac{3\left(\frac{-2p^3 + 72pr - 27q^2}{9}\right)^2 + 4\left(\frac{p^2 + 12r}{3}\right)^3\left(\frac{-2p^3 + 72pr + 27c}{27}\right)}{27}}}{2}} - \frac{2p}{3}}}}}}}{2} - \frac{b}{4a}$

Then we substitute each of the $p, q, r$s for those rather large expressions and simplify.

$x=-\frac{b}{4a}\pm\left(\frac{1}{2}\sqrt{\frac{3b^2-8ac}{12a^2}+\frac{1}{3a}\left(\sqrt[3]{\frac{2c^3-9bcd+27b^2e+27ad^2-72ace+\sqrt{\left(2c^3-9bcd+27b^2e+27ad^2-72ace\right)^2-4\left(c^2-3bd+12ae\right)^3}}{2}}+\frac{c^2-3bd+12ae}{\sqrt[3]{\frac{2c^3-9bcd+27b^2e+27ad^2-72ace+\sqrt{\left(2c^3-9bcd+27b^2e+27ad^2-72ace\right)^2-4\left(c^2-3bd+12ae\right)^3}}{2}}}\right)}\right)\pm\frac{1}{2}\sqrt{-4\left(\frac{1}{2}\sqrt{\frac{3b^2-8ac}{12a^2}+\frac{1}{3a}\left(\sqrt[3]{\frac{2c^3-9bcd+27b^2e+27ad^2-72ace+\sqrt{\left(2c^3-9bcd+27b^2e+27ad^2-72ace\right)^2-4\left(c^2-3bd+12ae\right)^3}}{2}}+\frac{c^2-3bd+12ae}{\sqrt[3]{\frac{2c^3-9bcd+27b^2e+27ad^2-72ace+\sqrt{\left(2c^3-9bcd+27b^2e+27ad^2-72ace\right)^2-4\left(c^2-3bd+12ae\right)^3}}{2}}}\right)}\right)^2-\frac{8ac-3b^2}{4a^2}+\frac{\frac{b^3-4abc+8a^2d}{8a^3}}{\frac{1}{2}\sqrt{\frac{3b^2-8ac}{12a^2}+\frac{1}{3a}\left(\sqrt[3]{\frac{2c^3-9bcd+27b^2e+27ad^2-72ace+\sqrt{\left(2c^3-9bcd+27b^2e+27ad^2-72ace\right)^2-4\left(c^2-3bd+12ae\right)^3}}{2}}+\frac{c^2-3bd+12ae}{\sqrt[3]{\frac{2c^3-9bcd+27b^2e+27ad^2-72ace+\sqrt{2c^3-9bcd+27b^2e+27ad^2-72ace^2-4\left(c^2-3bd+12ae\right)^3}}{2}}}\right)}}}$

External Links

Quora

https://www.quora.com/What-is-the-general-formula-for-quartic-equation

===Wikipedia https://en.wikipedia.org/wiki/Quartic_function