Difference between revisions of "Riemann sum"

(New page: A '''Reimann sum''' is a finite approximation to the Reimann Integral ==Definition== Let <math>f:[a,b]\rightarro\mathbb{R}</math> Let <math>\mathcal{\dot{P}}=\{([x_{i-1},x_i...)
 
m (LaTeX)
Line 2: Line 2:
  
 
==Definition==
 
==Definition==
Let <math>f:[a,b]\rightarro\mathbb{R}</math>
+
Let <math>f:[a,b]\rightarrow\mathbb{R}</math>
  
 
Let <math>\mathcal{\dot{P}}=\{([x_{i-1},x_i],t_i)\}_{i=1}^n</math> be a [[Partition of an interval|tagged partition]] on <math>[a,b]</math>
 
Let <math>\mathcal{\dot{P}}=\{([x_{i-1},x_i],t_i)\}_{i=1}^n</math> be a [[Partition of an interval|tagged partition]] on <math>[a,b]</math>
  
The '''Reimann sum''' of <math>f</math> with respect to <math>\mathcal{\dot{P}}</math> on <math>[a,b]</math> is defined as <math>S(f,\mathcal{\dot{P}})=\displaystyle\sum_{i=1}^n f(t_i)(x_i-x_{i-1})</math>
+
The '''Reimann sum''' of <math>f</math> with respect to <math>\mathcal{\dot{P}}</math> on <math>[a,b]</math> is defined as <math>S(f,\mathcal{\dot{P}})=\sum_{i=1}^n f(t_i)(x_i-x_{i-1})</math>
  
 
==Related Tems==
 
==Related Tems==
 
===The Upper sum===
 
===The Upper sum===
Let <math>f:[a,b]\rightarro\mathbb{R}</math>
+
Let <math>f:[a,b]\rightarrow\mathbb{R}</math>
  
 
Let <math>\mathcal{P}=\{[x_{i-1},x_i]\}_{i=1}^n</math> be a [[Partition of an interval|partition]] on <math>[a,b]</math>
 
Let <math>\mathcal{P}=\{[x_{i-1},x_i]\}_{i=1}^n</math> be a [[Partition of an interval|partition]] on <math>[a,b]</math>
Line 16: Line 16:
 
Let <math>M_i=\sup \{f(x):x\in [x_{i-1},x_i]\}\forall i</math>
 
Let <math>M_i=\sup \{f(x):x\in [x_{i-1},x_i]\}\forall i</math>
  
The '''Upper sum''' of <math>f</math> with respect to <math>\mathcal{P}</math> on <math>[a,b]</math> is defined as <math>U(f,\mathcal{P})=\displaystyle\sum_{i=1}^n M_i (x_i-x_{i-1})</math>
+
The '''Upper sum''' of <math>f</math> with respect to <math>\mathcal{P}</math> on <math>[a,b]</math> is defined as <math>U(f,\mathcal{P})=\sum_{i=1}^n M_i (x_i-x_{i-1})</math>
  
 
===The Lower sum===
 
===The Lower sum===
Let <math>f:[a,b]\rightarro\mathbb{R}</math>
+
Let <math>f:[a,b]\rightarrow\mathbb{R}</math>
  
 
Let <math>\mathcal{P}=\{[x_{i-1},x_i]\}_{i=1}^n</math> be a [[Partition of an interval|partition]] on <math>[a,b]</math>
 
Let <math>\mathcal{P}=\{[x_{i-1},x_i]\}_{i=1}^n</math> be a [[Partition of an interval|partition]] on <math>[a,b]</math>
Line 25: Line 25:
 
Let <math>m_i=\inf \{f(x):x\in [x_{i-1},x_i]\}\forall i</math>
 
Let <math>m_i=\inf \{f(x):x\in [x_{i-1},x_i]\}\forall i</math>
  
The '''Lower sum''' of <math>f</math> with respect to <math>\mathcal{P}</math> on <math>[a,b]</math> is defined as <math>L(f,\mathcal{P})=\displaystyle\sum_{i=1}^n m_i (x_i-x_{i-1})</math>
+
The '''Lower sum''' of <math>f</math> with respect to <math>\mathcal{P}</math> on <math>[a,b]</math> is defined as <math>L(f,\mathcal{P})=\sum_{i=1}^n m_i (x_i-x_{i-1})</math>
  
 
==See Also==
 
==See Also==

Revision as of 01:58, 16 February 2008

A Reimann sum is a finite approximation to the Reimann Integral

Definition

Let $f:[a,b]\rightarrow\mathbb{R}$

Let $\mathcal{\dot{P}}=\{([x_{i-1},x_i],t_i)\}_{i=1}^n$ be a tagged partition on $[a,b]$

The Reimann sum of $f$ with respect to $\mathcal{\dot{P}}$ on $[a,b]$ is defined as $S(f,\mathcal{\dot{P}})=\sum_{i=1}^n f(t_i)(x_i-x_{i-1})$

Related Tems

The Upper sum

Let $f:[a,b]\rightarrow\mathbb{R}$

Let $\mathcal{P}=\{[x_{i-1},x_i]\}_{i=1}^n$ be a partition on $[a,b]$

Let $M_i=\sup \{f(x):x\in [x_{i-1},x_i]\}\forall i$

The Upper sum of $f$ with respect to $\mathcal{P}$ on $[a,b]$ is defined as $U(f,\mathcal{P})=\sum_{i=1}^n M_i (x_i-x_{i-1})$

The Lower sum

Let $f:[a,b]\rightarrow\mathbb{R}$

Let $\mathcal{P}=\{[x_{i-1},x_i]\}_{i=1}^n$ be a partition on $[a,b]$

Let $m_i=\inf \{f(x):x\in [x_{i-1},x_i]\}\forall i$

The Lower sum of $f$ with respect to $\mathcal{P}$ on $[a,b]$ is defined as $L(f,\mathcal{P})=\sum_{i=1}^n m_i (x_i-x_{i-1})$

See Also


This article is a stub. Help us out by expanding it.