Difference between revisions of "Sequence"

m (Monotone Sequences)
(16 intermediate revisions by 3 users not shown)
Line 1: Line 1:
A '''sequence''' is an ordered list of terms.  Sequences may be either [[finite]] or [[infinite]].  In [[mathematics]] we are often interested in sequences with specific properties, the [[Fibonacci sequence]] is perhaps the most famous example.
+
A '''sequence''' is an ordered list of terms.  Sequences may be either [[finite]] or [[infinite]].
  
 
==Definition==
 
==Definition==
A '''sequence of real numbers''' is simply a function
+
A sequence of real numbers is simply a function <math>f : \mathbb{N} \rightarrow \mathbb{R}</math>. For instance, the function <math>f(x) = x^2</math> defined on <math>\mathbb{N}</math> corresponds to the sequence <math>X = (x_n) = (0, 1, 4, 9, 16, \ldots)</math>.
 
 
<math>f:\mathbb{N}\rightarrow\mathbb{R}</math>
 
 
 
The numbers <math>f(n)</math> are often denoted as <math>a_n</math> and the set <math>f(\mathbb{N})</math> is denoted as the 'sequence' <math>\left\langle a_n\right\rangle</math>
 
  
 
==Convergence==
 
==Convergence==
The notion of 'converging sequences' is often useful in [[Analysis|real analysis]]
+
Intuitively, a sequence '''converges''' if its terms approach a particular number.
  
Let <math>\left\langle a_n\right\rangle</math> be a real valued sequence
+
Formally, a sequence <math>(x_n)</math> of reals converges to <math>L \in \mathbb{R}</math> if and only if for all positive reals <math>\epsilon</math>, there exists a positive integer <math>k</math> such that for all integers <math>n \ge k</math>, we have <math>|x_n - L| < \epsilon</math>.
  
Let <math>L\in\mathbb{R}</math>
+
If <math>(x_n)</math> converges to <math>L</math>, <math>L</math> is called the [[limit]] of <math>(x_n)</math> and is written <math>\lim_{n \to \infty} x_n</math>. The statement that <math>(x_n)</math> converges to <math>L</math> can be written as <math>(x_n)\rightarrow L</math>.
  
We say that '<math>\lim_{n\rightarrow\infty}a_n=L</math>'
+
==Monotone Sequences==
 +
Many significant sequences have their terms continually increasing, such as <math>(n^2)</math>, or continually decreasing, such as <math>(1/n)</math>. This motivates the following definitions:
  
or '<math>\left\langle a_n\right\rangle</math> converges to <math>L</math>' if and only if
+
A sequence <math>(p_n)</math> of reals is said to be
  
<math>\forall\epsilon>0</math>, <math>\exists\M\in\mathbb{N}</math> such that <math>n>M\implies |L-a_n|<\epsilon</math>  
+
* '''increasing''' if <math>p_n\leq p_{n+1}</math> for all <math>n\in\mathbb{N}</math> and '''strictly increasing''' if <math>p_n<p_{n+1}</math> for all <math>n\in\mathbb{N}</math>,
 +
* '''decreasing''' if <math>p_n\geq p_{n+1}</math> for all <math>n\in\mathbb{N}</math> and '''strictly decreasing''' if <math>p_n>p_{n+1}</math> for all <math>n\in\mathbb{N}</math>,
 +
* '''monotone''' if it is either decreasing or increasing.
  
 
== Resources ==
 
== Resources ==
* [http://www.research.att.com/~njas/sequences/ Online Encyclopedia of Integer Sequences] -- A really cool math tool.
+
* [http://www.research.att.com/~njas/sequences/ Online Encyclopedia of Integer Sequences]
  
 
== See Also ==
 
== See Also ==
 
* [[Arithmetic sequence]]
 
* [[Arithmetic sequence]]
 
* [[Geometric sequence]]
 
* [[Geometric sequence]]
* [[Bolzano-Weierstrass theorem]]
+
* [[Bolzano-Weierstrass Theorem]]
  
 
{{stub}}
 
{{stub}}

Revision as of 15:07, 17 October 2012

A sequence is an ordered list of terms. Sequences may be either finite or infinite.

Definition

A sequence of real numbers is simply a function $f : \mathbb{N} \rightarrow \mathbb{R}$. For instance, the function $f(x) = x^2$ defined on $\mathbb{N}$ corresponds to the sequence $X = (x_n) = (0, 1, 4, 9, 16, \ldots)$.

Convergence

Intuitively, a sequence converges if its terms approach a particular number.

Formally, a sequence $(x_n)$ of reals converges to $L \in \mathbb{R}$ if and only if for all positive reals $\epsilon$, there exists a positive integer $k$ such that for all integers $n \ge k$, we have $|x_n - L| < \epsilon$.

If $(x_n)$ converges to $L$, $L$ is called the limit of $(x_n)$ and is written $\lim_{n \to \infty} x_n$. The statement that $(x_n)$ converges to $L$ can be written as $(x_n)\rightarrow L$.

Monotone Sequences

Many significant sequences have their terms continually increasing, such as $(n^2)$, or continually decreasing, such as $(1/n)$. This motivates the following definitions:

A sequence $(p_n)$ of reals is said to be

  • increasing if $p_n\leq p_{n+1}$ for all $n\in\mathbb{N}$ and strictly increasing if $p_n<p_{n+1}$ for all $n\in\mathbb{N}$,
  • decreasing if $p_n\geq p_{n+1}$ for all $n\in\mathbb{N}$ and strictly decreasing if $p_n>p_{n+1}$ for all $n\in\mathbb{N}$,
  • monotone if it is either decreasing or increasing.

Resources

See Also

This article is a stub. Help us out by expanding it.