Simon's Favorite Factoring Trick

Revision as of 14:12, 21 June 2006 by Chess64 (talk | contribs) (Examples)


Simon's Favorite Factoring Trick (abbreviated SFFT) is a special factorization first popularized by AoPS user Simon Rubinstein-Salzedo. This appears to be the thread where Simon's favorite factoring trick was first introduced.

Statement of the factorization

The general statement of SFFT is: ${xy}+{xk}+{yj}+{jk}=(x+j)(y+k)$. More oftenly however SFFT is introduced as $xy + x + y + 1 = (x+1)(y+1)$ or $xy - x - y +1 = (x-1)(y-1)$.


This factorization frequently shows up on contest problems, especially those heavy on algebraic manipulation. Usually ${x}$ and ${y}$ are variables and $j,k$ are known constants. Also it is typically necessary to add the ${j}{k}$ term to both sides to perform the factorization.


Invalid username
Login to AoPS