Slalom conjuncture

Revision as of 17:37, 21 January 2021 by Elbertpark (talk | contribs) (Created page with "<h1>The Slalom Conjuncture</h1> <h2>As discovered by Elbertpark</h2> <h3>Written by Elbertpark</h3> <h4>Idea made by Elbertpark...</h4> <h5>and so on</h5> <h1>What IS the Sla...")
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

The Slalom Conjuncture

As discovered by Elbertpark

Written by Elbertpark

Idea made by Elbertpark...

and so on

What IS the Slalom Conjuncture?

The Slalom Conjuncture was discovered during a math assignment. It states that if there is an odd square $n^2$, then this square has a maximum of $n^2 - 2n$ factors.

Listed is a table of squares and factors up to 11.

Number $n^2$ # of factors
1 1 1
3 9 3
5 25 3
7 49 3
9 81 5
11 121 3
... ... ...
81 6561 9
4001 16008001 3

Note that most of the squares, even 4001, have only 3 factors.


Unfortunately, only Doggo and Gmaas have the logical, solid proof to this conjuncture. That is why this is a conjuncture.

Broken proof

For now we can agree that because soon the squares will be growing exponentially, this conjuncture cannot be wrong... yet.

Invalid username
Login to AoPS