Search results

  • <math>\sum_{closed loop} \Delta V = 0</math>
    406 bytes (67 words) - 20:36, 7 March 2014
  • ...non-zero vector that satisfies the relation <math>A\bold{v} = \lambda\bold{v}</math>, for some scalar <math>\lambda \in K</math>. In other words, applyi ...bold{v} = \lambda \bold{v}</math>, then <math>\lambda I \bold{v} - A \bold{v} = \bold{O}</math>. But then, the column vectors of <math>\lambda I - A</ma
    20 KB (3,415 words) - 23:26, 9 October 2021
  • ...r constant <math>\lambda</math> such that <math>L \bold{v} = \lambda \bold{v}</math>. Here, <math>\lambda</math> is known as the '''eigenvalue''' associ
    821 bytes (138 words) - 19:32, 2 March 2010
  • ...h>, there exists a connected open set <math>V</math> such that <math>x \in V \subset C</math>. <math>X</math> is locally connected if it is locally conn ...here exists a path-connected open set <math>V</math> such that <math>x \in V \subset C</math>. <math>X</math> is locally path-connected if it is locally
    3 KB (497 words) - 16:27, 15 March 2010
  • ...el("$y$",(A+C)/2 + shiftfactor,(1.2,-1.2)); label("$U$",B,(1,-1)); label("$V$",B+shiftfactor,(1,-1)); ...sets <math>U, V</math> such that <math>x \in U, y \in V</math> and <math>U,V</math> are [[disjoint]].
    5 KB (672 words) - 13:28, 4 June 2018
  • ...[[vector]]s <math>v_1, v_2, \ldots, v_n</math> in a [[vector space]] <math>V</math> over a field <math>K</math> are '''linearly independent''' if there ...ndependent [[iff]] their [[determinant]] <math>D(\bold{v}_1, \ldots, \bold{v}_n) = 0</math>.
    2 KB (300 words) - 23:35, 16 March 2010
  • V=D("V",circumcenter(Ia,Ib,Ic),SE); D(circumcircle(B,C,V),linetype("2 2")+rgb(0.6,0,1));
    3 KB (553 words) - 09:41, 17 January 2016
  • pair V=(0,0.5); draw(V--O);
    3 KB (543 words) - 19:52, 27 January 2021
  • ...so we can color it in k ways. We then move on to the vertices adjacent to v, etc, and at the end we multiply all these together. For example, the chrom
    8 KB (1,400 words) - 02:19, 8 August 2021
  • main(int a, char **v) { int n=atoi(v[1]),
    1 KB (188 words) - 18:08, 21 February 2011
  • A segment through the focus <math>F</math> of a parabola with vertex <math>V</math> is perpendicular to <math>\overline{FV}</math> and intersects the pa
    13 KB (1,978 words) - 16:28, 12 July 2020
  • ...and diagonal are the same. Five of these numbers are represented by <math> v </math>, <math> w </math>, <math> x </math>, <math> y </math>, and <math> z label("$v$",(0.5,2.5));
    5 KB (718 words) - 22:46, 29 June 2021
  • ...h>V</math> and <math>W</math> are on <math>\overline{AC}</math> with <math>V</math> on <math>\overline{AW}</math>, points <math>X</math> and <math>Y</ma pair[] A, B, C, U, V, W, X, Y, Z;
    10 KB (1,638 words) - 21:57, 10 August 2020
  • ...h>V</math> and <math>W</math> are on <math>\overline{AC}</math> with <math>V</math> on <math> \overline{AW} </math>, points <math>X</math> and <math>Y</ pair[] A, B, C, U, V, W, X, Y, Z;
    6 KB (1,077 words) - 21:47, 12 April 2022
  • ...math>P(v) = 4</math>, which will give us the working range <math>5 \le x < v</math>. v^2 - 3v - 9 &= 4 \\
    8 KB (1,273 words) - 21:25, 30 January 2022
  • ...> <cmath>\vec{w} = \vec{CD} + \vec{FA}</cmath> Clearly, <math>\vec{u}+\vec{v}+\vec{w}=\textbf{0}</math>. ...th>. Thus, <math>|\vec{u}|=2p \cos \gamma</math>. Similarly, <math>|\vec{v}|=2q \cos \alpha</math> and <math>|\vec{w}| = 2r \cos \beta</math>.
    10 KB (1,923 words) - 16:56, 26 August 2020
  • A segment through the focus <math>F</math> of a parabola with vertex <math>V</math> is perpendicular to <math>\overline{FV}</math> and intersects the pa ...e equidistant from <math>F</math> and <math>l</math>. Therefore <math>FV=d(V,l)</math>. Let this distance be <math>d</math>. Now note that <math>d(F,l)=
    4 KB (619 words) - 19:15, 11 May 2021
  • ! scope="row" | '''Mock AMC V'''
    18 KB (2,206 words) - 19:41, 24 December 2020
  • label("$V-4\beta$",(0,-0.3),red); /* AUTO-GRAPH V-4 beta by PythonNut*/
    17 KB (2,910 words) - 15:01, 2 September 2011
  • <cmath> V. x+y = 13, \{49, 58, 67, 76, 85, 94\} = 6 </cmath>
    5 KB (805 words) - 15:53, 20 February 2022
  • ...{v} \rfloor</math> means the greatest integer less than or equal to <math>v</math>.)
    1 KB (155 words) - 07:58, 22 October 2014
  • .../math> and the remainder is <math>v</math>, where <math>u</math> and <math>v</math> are integers. \textbf{(D)}\ v \qquad
    2 KB (266 words) - 03:30, 23 July 2019
  • The volume of a cylinder is given by the formula <math>V=\pi r^2 h</math>. The given cylinder therefore has a volume of <math>\pi (1
    2 KB (266 words) - 00:09, 5 July 2013
  • ...? Because Uberdude supplied a hint that the answer begins with the letter V, and a vole seemed as good as anything else. Vole are small rodents, like m
    307 bytes (64 words) - 12:59, 10 September 2012
  • ...-4), P=(1,-3.8), Q=(1,-3.6), R=(1,-3.4), S=(1,-3.2), T=(1,-3), U=(1,-2.8), V=(1,-2.6), W=(1,-2.4), Z=(1,-2.2), E_1=(1.4,-2.6), F_1=(1.8,-2.6), O_1=(14,- ...th(1pt)); D(S,linewidth(1pt)); D(T,linewidth(1pt)); D(U,linewidth(1pt)); D(V,linewidth(1pt)); D(W,linewidth(1pt)); D(Z,linewidth(1pt)); D(E_1,linewidth(
    18 KB (2,742 words) - 20:46, 29 July 2021
  • ...,-2), M=(0,-6), O=(0,-4), P=(4,-4), Q=(2,-2), R=(2,-6), T=(6,4), U=(10,0), V=(10,4), Z=(10,2), A_1=(8,4), B_1=(8,0), C_1=(6,-2), D_1=(10,-2), E_1=(6,-6) ...--cycle,linewidth(1.6)); draw(M--O--Q--R--cycle,linewidth(1.6)); draw(A_1--V--Z--cycle,linewidth(1.6)); draw(G_1--K_1--J_1--E_1--cycle,linewidth(1.6));
    16 KB (2,345 words) - 00:46, 16 January 2022
  • <math>\text{(v)}</math> Without the use of logarithm tables evaluate <math>\frac{1}{\log_{
    4 KB (540 words) - 18:23, 8 October 2014
  • <math>\text{(v)}</math> Without the use of logarithm tables evaluate <math>\frac{1}{\log_{ <math>\text{(v)}</math> <center>
    2 KB (286 words) - 15:14, 21 July 2012
  • ...,-2), M=(0,-6), O=(0,-4), P=(4,-4), Q=(2,-2), R=(2,-6), T=(6,4), U=(10,0), V=(10,4), Z=(10,2), A_1=(8,4), B_1=(8,0), C_1=(6,-2), D_1=(10,-2), E_1=(6,-6) ...--cycle,linewidth(1.6)); draw(M--O--Q--R--cycle,linewidth(1.6)); draw(A_1--V--Z--cycle,linewidth(1.6)); draw(G_1--K_1--J_1--E_1--cycle,linewidth(1.6));
    3 KB (544 words) - 19:57, 17 August 2021
  • ...{v} \rfloor</math> means the greatest integer less than or equal to <math>v</math>.)
    15 KB (2,247 words) - 13:44, 19 February 2020
  • ...th>. What is the probability that the square region determined by <math>T(v)</math> contains exactly two points with integer coordinates in its interio
    14 KB (2,197 words) - 13:34, 12 August 2020
  • ...th>. What is the probability that the square region determined by <math>T(v)</math> contains exactly two points with integer coefficients in its interi ...math>v=(x,y)</math> will create the translation of <math>S</math>, <math>T(v)</math> such that it covers both <math>(0,0)</math> and <math>(1,0)</math>.
    4 KB (658 words) - 20:37, 19 January 2021
  • ...ive slope starting at positive 1. The function now looks like the letter V repeated within every square in the first row.
    3 KB (584 words) - 02:55, 26 September 2020
  • ...of the escalator and <math>c</math> be the speed of Clea. Using <math>d = v t</math>, the first statement can be translated to the equation <math>d = 6
    2 KB (291 words) - 22:22, 29 September 2020
  • The volume of this pyramid can be found by the equation <math>V=\frac{1}{3}bh</math>, where <math>b</math> is the base and <math>h</math> i Finally, <math>V=\frac{1}{3}bh=\frac{1}{3}(225)(10)=\boxed{750}</math>.
    2 KB (362 words) - 16:34, 29 February 2020
  • ...,F)); label("$\gamma$",gamma,dir(180)); label("$u$",X--D,dir(60)); label("$v$",D--F,dir(70)); Let <math>EF=x</math>, <math>XD=u</math>, and <math>DF=v</math>. Then <math>XE^2-XF^2=EF^2=DE^2-DF^2</math>, so we get
    10 KB (1,790 words) - 17:17, 15 January 2022
  • ...ank}(A)=r<4</math>, prove the existence of two invertible matrices <math>U,V\in M_4(C)</math>, such that:
    10 KB (1,695 words) - 10:03, 10 May 2012
  • ...h>, distance <math>a</math>, formula <math>v=\frac{a}{t}</math> or <math>a=v \cdot t</math>.
    1 KB (191 words) - 14:40, 20 April 2014
  • ...ind a vertical vector <math> v </math> such that <math> (A^8+A^6+A^4+A^2+I)v=\left(\begin{matrix}0\\11\end{matrix}\right) </math> (where <math> I </math
    4 KB (596 words) - 20:09, 27 May 2012
  • ...ind a vertical vector <math> v </math> such that <math> (A^8+A^6+A^4+A^2+I)v=\left(\begin{matrix}0\\11\end{matrix}\right) </math> (where <math> I </math ...ght)v=\left(\begin{matrix}0\\11\end{matrix}\right) </math>. Letting <math> v=\left(\begin{matrix}a\\b\end{matrix}\right) </math>, we get the system of e
    2 KB (297 words) - 20:09, 27 May 2012
  • ...-4), P=(1,-3.8), Q=(1,-3.6), R=(1,-3.4), S=(1,-3.2), T=(1,-3), U=(1,-2.8), V=(1,-2.6), W=(1,-2.4), Z=(1,-2.2), E_1=(1.4,-2.6), F_1=(1.8,-2.6), O_1=(14,- ...th(1pt)); D(S,linewidth(1pt)); D(T,linewidth(1pt)); D(U,linewidth(1pt)); D(V,linewidth(1pt)); D(W,linewidth(1pt)); D(Z,linewidth(1pt)); D(E_1,linewidth(
    5 KB (840 words) - 15:22, 15 August 2021
  • ...an upright V.}\\ \textbf{(D)}\ \text{Two line segments forming an inverted V.}\\ \textbf{(E)}\ \text{None of these.} </math>
    23 KB (3,535 words) - 16:29, 24 April 2020
  • ...fication/Lemma:}</math> The sum of degrees of a connected graph <math>G = (V,E)</math> is <math>2V -2 + 2R = 2E,</math> where <math>R</math> is the circ <math>\textit{Proof.}</math> <math>2 \times V -2</math> is the sum of ranks of the spanning tree created by decircuiting
    2 KB (440 words) - 01:58, 27 November 2017
  • ...true with equality iff either (1) <math>p = q</math> or (2) three of <math>v, w, x, y, z</math> are <math>p</math> and two are <math>q</math> or vice ve
    2 KB (389 words) - 23:08, 27 June 2018
  • ...itive integers <math>s, t, u, v, w, x, y, z</math> where <math>s > t > u > v > w > x > y > z</math>. Find <math>2(z + u) + s + t + v + w + x + y</math>.
    15 KB (2,452 words) - 03:03, 4 July 2020
  • The volume of the box is given by the equation <math>V(x, y, z) = xyz</math>. Because the way the box is described, the point that ...<cmath>\dfrac{\partial V}{\partial y} = xz</cmath> <cmath>\dfrac{\partial V}{\partial z} = xy</cmath>
    5 KB (791 words) - 21:06, 30 November 2020
  • We can use Euler's polyhedron formula that says that <math>F+V=E+2</math>. We know that there are originally <math>6</math> faces on the
    1 KB (169 words) - 21:46, 28 December 2019
  • ...t of a radical of a complex number: <math>\sqrt{u}</math>, where <math>u = v+wi = r e^{i\theta}</math>. ...(\theta/2) = \pm \sqrt{r}\sqrt{\frac{1-\cos\theta}{2}} = \pm \sqrt{\frac{r-v}{2}}</math>.
    4 KB (767 words) - 16:52, 3 April 2020
  • label("$V$", (1.7922953932137468,0.6108747864253139), NE * labelscalefactor); label("$V$", (1.7922953932137468,0.6108747864253139), NE * labelscalefactor);
    14 KB (1,823 words) - 22:03, 22 October 2021
  • ...u-v}{u+v}\right), \frac{2uv}{u+v})</math>. Also, <math>Z\left(\frac{u-v}{u+v}\right), 0)</math>. It shall be left to the reader to find the slope of <ma
    7 KB (1,250 words) - 18:05, 1 October 2021
  • ...(\frac{1}{16},\frac{1}{8},\frac{1}{13})</math>. Let <math> \overrightarrow{v} </math> be a vector with head <math>(\frac{1}{16},\frac{1}{8},\frac{1}{13}
    1 KB (213 words) - 20:48, 15 February 2015
  • ...uv.xy}+\overline{xy.uv} </cmath> is an integer? As an example, if <math>(u,v,x,y)=(0,1,2,3)</math>, then we have <math> N = 1.23 + 23.01 = 24.24 </math>
    8 KB (1,336 words) - 09:10, 30 May 2020
  • ...>. Again, by the observation in the previous paragraph, the points <math>U,V,T</math> must have different colors if we are to have no monochromatic righ
    2 KB (373 words) - 23:40, 29 January 2021
  • ...th> is even and <math>v</math> is odd and <math>u - v = 1</math>, is <math>v</math>. ...ts and v blue ones (<math>u</math> is even, <math>v</math> is odd, <math>u>v</math>).
    3 KB (638 words) - 04:30, 18 June 2018
  • I shall prove a more general statement about the unit distance graph(<math>V=\mathbb{R}^2</math>, adjacency iff the Euclidean distance between the point ...here <math>G\times H</math> is described as <math>V(G\times H)=V(G)\times V(H), (v_1,w_1)\leftrightarrow (v_2,w_2) \Leftrightarrow v_1=v_2,w_1\leftrigh
    4 KB (749 words) - 14:09, 29 January 2021
  • ...h>) that we can find a circle passing through <math>U,D</math> (or <math>F,V</math>) which cuts the segments <math>UV,DF</math> in <math>X,Y</math>. Our
    1 KB (230 words) - 15:35, 29 January 2021
  • ...h that the translation with translation vector <math>k\cdot\overrightarrow{v}_p</math> maps the plane <math>p_i</math> to the plane <math>p_j</math>. Si
    7 KB (1,370 words) - 15:42, 29 January 2021
  • ...he area <math>(A)</math> of the sail and the square of the velocity <math>(V)</math> of the wind. The pressure on a square foot is <math>1</math> pound .../math>. Solving for <math>V</math>, we get <math>V^2=1024</math>, so <math>V=32</math>. Hence, the answer is <math>\boxed{C}</math>.
    1 KB (220 words) - 19:45, 20 November 2014
  • ...line{CA}</math> and <math>\overline{AB}</math>, respectively. Let <math>U,V</math> be the intersections of line <math>EF</math> with line <math>MN</mat pair A, B, C, I, M, N, P, E, F, U, V, X, R;
    7 KB (1,273 words) - 18:17, 28 August 2021
  • The volume <math>V = \pi R^2H</math> is to be increased by the same fixed positive amount when
    21 KB (3,242 words) - 21:27, 30 December 2020
  • Of the following five statements, I to V, about the binary operation of averaging (arithmetic mean), <math>\text{V. Averaging has an identity element }</math>
    18 KB (2,788 words) - 13:55, 20 February 2020
  • ...1,1)</math> and <math>C(0,1)</math>. Let <math>u=x^2-y^2</math>, and <math>v=xy</math> be a transformation of the <math>xy</math>-plane into the <math>u ...h>x = \tfrac{v}{2}</math>, <math>u = (\tfrac{v}{2})^2 - 1</math>, so <math>v = 2\sqrt{u+1}</math>, where <math>-1 \le u \le 0</math>. That means some o
    2 KB (377 words) - 17:24, 20 June 2018
  • ...1,1)</math> and <math>C(0,1)</math>. Let <math>u=x^2-y^2</math>, and <math>v=2xy</math> be a transformation of the <math>xy</math>-plane into the <math>
    16 KB (2,662 words) - 14:12, 20 February 2020
  • . A gateway valve has actually a v-ring packaging establish that secures the shaft that's affixed to the gatew
    4 KB (596 words) - 22:28, 25 August 2021
  • ...),-sqrt(5)), W=(4+2/sqrt(5),sqrt(5)), T=(4,0), U=(4+2/sqrt(5),-4/sqrt(5)), V=(4+2/sqrt(5),1/sqrt(5)); draw(X--Y--Z--W--X^^T--V--X^^Y--U);
    17 KB (2,535 words) - 13:45, 19 February 2020
  • <math>\{V, W, X, Y, Z\}</math>. Using this correspondence, the cryptographer finds th
    16 KB (2,291 words) - 13:45, 19 February 2020
  • ...</math> to <math>A, B</math> and <math>C</math>, respectively, be <math>u, v</math> and <math>w</math>. ...est distance that <math>P</math> can be from <math>D</math> if <math>u^2 + v^2 = w^2</math>?
    15 KB (2,309 words) - 23:43, 2 December 2021
  • \text{(v) }y+a\ge x </math>
    15 KB (2,437 words) - 04:39, 26 November 2021
  • the vertex <math>V</math> to this path? MP("P",(-1,0),W);MP("V",(-.5,2.4),N);
    889 bytes (136 words) - 15:53, 7 October 2014
  • real t=pi/8;real u=7*pi/12;real v=13*pi/12; draw((ct,st)--(-ct,st)--(cos(v),sin(v)));
    17 KB (2,732 words) - 13:54, 20 February 2020
  • \text{(V) } 2007 \quad </math>
    929 bytes (137 words) - 22:05, 10 January 2019
  • \text{(V) } 21\qquad
    2 KB (270 words) - 14:35, 29 July 2018
  • ...oor</math> (the greatest integer less than or equal to the volume of <math>V</math>).
    510 bytes (87 words) - 23:03, 7 October 2014
  • <math>\text{(V) Ying} \quad
    1 KB (202 words) - 16:48, 24 November 2018
  • \text{(V) }21 \quad
    2 KB (340 words) - 19:49, 30 June 2018
  • label("$u$",T+(-0.1,-0.2), S); label("$v$", S+(0,-0.2), S); Denote <math>\angle{HSB}=v</math>, <math>\angle{HTD}=u</math>, <math>\angle{HSC}=s</math>, <math>\angl
    6 KB (1,071 words) - 03:58, 8 September 2018
  • .../math> and the remainder is <math>v</math>, where <math>u</math> and <math>v</math> are integers. \textbf{(D)}\ v \qquad
    19 KB (2,907 words) - 14:16, 20 February 2020
  • If <math>V = gt + V_0</math> and <math>S = \frac {1}{2}gt^2 + V_0t</math>, then <math> <math> \textbf{(A)}\ \frac{2S}{V+V_0}\qquad
    20 KB (3,039 words) - 22:44, 12 February 2021
  • ...),-sqrt(5)), W=(4+2/sqrt(5),sqrt(5)), T=(4,0), U=(4+2/sqrt(5),-4/sqrt(5)), V=(4+2/sqrt(5),1/sqrt(5)); draw(X--Y--Z--W--X^^T--V--X^^Y--U);
    2 KB (334 words) - 14:11, 27 February 2018
  • ...>T</math> is halfway between <math>Q</math> and <math>R</math>, then <math>V</math> is halfway between <math>P</math> and <math>S</math>. Therefore, <m
    2 KB (349 words) - 02:41, 23 October 2014
  • <math>\{V, W, X, Y, Z\}</math>. Using this correspondence, the cryptographer finds th ...to <math>0</math>, <math>3</math>, and <math>4</math>), we must have <math>V = 2</math> and <math>Y = 1</math>. Thus <math>XYZ = 413_{5} = 4 \cdot 5^{2}
    2 KB (242 words) - 14:32, 1 March 2018
  • ...pairs (not counting transpositions because this does not affect (<math>u + v</math>), <math>(2, 8), (4, 4), (-2, -8), (-4, -4)</math>, yields <math>a =
    2 KB (372 words) - 00:28, 27 September 2021
  • ...dron and <math>TD</math> as the height. Thus, the desired volume is <cmath>V = \dfrac{1}{3} Bh = \dfrac{1}{3}\cdot[ABC]\cdot TD = \dfrac{1}{3} \cdot 6 \ <cmath>V = \dfrac{1}{3} Bh = \dfrac{1}{3} h \cdot BE \cdot \dfrac{6\sqrt{2}}{5} = \d
    4 KB (574 words) - 09:24, 28 December 2021
  • path h = ellipse((0.5,0),0.45,0.015), v = ellipse((0,0.5),0.015,0.45); filldraw(shift((j,i))*v,black);
    2 KB (266 words) - 18:02, 16 June 2020
  • ...>a\neq 0</math> (else <math>f</math> is not cubic) where <math>\{q,r,s,t,u,v\}</math> is the same as the set <math>\{1,2,3,5,6,7\}</math>. Subtracting t <cmath>24=a((t+u+v-(q+r+s))x^2-a(tu+uv+tv-(qr+qs+rs))x+a(tuv-qrs)</cmath>
    8 KB (1,359 words) - 12:04, 24 April 2022
  • ...he volume of water thus displaced is <math>v</math> cubic feet. Find <math>v^2</math>.
    8 KB (1,326 words) - 12:19, 13 March 2020
  • ...he volume of water thus displaced is <math>v</math> cubic feet. Find <math>v^2</math>. <cmath>v = \frac{1}{3}(2\sqrt{6})\left(\frac{1}{2} \cdot (2\sqrt{6})^2\right) = \fra
    3 KB (510 words) - 19:22, 16 March 2021
  • Let <math>M=(u,v)</math>, then <math>T=(2u+\cos(2A), 2v-\sin(2A))</math>. ...cos(2A))^2+ (2v-\sin(2A))^2=1</math>, namely <math>v\sin(2A)-u\cos(2A)=u^2+v^2</math>. (E2)
    5 KB (902 words) - 09:58, 20 August 2021
  • Let <math>M=(u,v)</math>, then <math>T=(2u+\cos(2A), 2v-\sin(2A))</math>. ...cos(2A))^2+ (2v-\sin(2A))^2=1</math>, namely <math>v\sin(2A)-u\cos(2A)=u^2+v^2</math>. (E2)
    4 KB (760 words) - 16:45, 29 April 2020
  • | <span class="aops-font">V</span> | V
    6 KB (920 words) - 16:40, 3 March 2021
  • https://www.youtube.com/watch?v=TFm1jNgB4QM ...maybe so?) we get <math>\frac{d}{v}=\frac{1}{3}</math> and <math>\frac{d}{v+18}=\frac{1}{5}</math>.
    3 KB (442 words) - 13:04, 14 April 2022
  • ...e, we can set up a proportion based on the principle that <math>d=\frac{m}{V}</math>, thus <math>dV=m</math>.
    2 KB (325 words) - 14:21, 19 January 2021
  • 231. Gmaas once demanded Epic Games to give him 5,000,000 V-bucks for his 569823rd birthday. EDIT: This is why Gmaas no longer has an E
    69 KB (11,805 words) - 20:49, 18 December 2019
  • pair V = incenter(A,C,P); dot("$I_C$", V, NW);
    5 KB (1,004 words) - 15:15, 28 June 2020
  • ...</math> to <math>A, B</math> and <math>C</math>, respectively, be <math>u, v</math> and <math>w</math>. ...est distance that <math>P</math> can be from <math>D</math> if <math>u^2 + v^2 = w^2</math>?
    1 KB (255 words) - 01:11, 20 February 2019
  • ...<math>\overline{MS}</math> intersects <math>\overline{OP}</math> at <math>V</math> . If <math>AB = 2,</math> <math>BC = 2005,</math> <math>CD = 4,</mat
    7 KB (1,094 words) - 15:39, 24 March 2019
  • r, s, t, u, v, w, x, y, and z such that n + l + v − y = 0
    14 KB (2,904 words) - 18:24, 16 May 2017
  • The vertices <math>V</math> of a centrally symmetric hexagon in the complex plane are given by <cmath>V=\left\{ \sqrt{2}i,-\sqrt{2}i, \frac{1}{\sqrt{8}}(1+i),\frac{1}{\sqrt{8}}(
    11 KB (1,828 words) - 09:44, 8 November 2021
  • ...th>1\leq j\leq 12</math>, an element <math>z_j</math> is chosen from <math>V</math> at random, independently of the other choices. Let <math>P={\prod}_{
    15 KB (2,418 words) - 14:43, 12 August 2020
  • <cmath>V = Bh/3</cmath> <cmath>V = (192)(25\sqrt{3}/2)/3</cmath>
    6 KB (986 words) - 06:59, 28 December 2020

View (previous 100 | next 100) (20 | 50 | 100 | 250 | 500)

Invalid username
Login to AoPS