Search results

  • <math>\delta x'(t)=v(t)</math> <math>v'(t)=a(t)</math>
    9 KB (1,355 words) - 06:29, 29 September 2021
  • ...{R} </math> be an [[inner product]]. Then for any <math> \mathbf{a,b} \in V </math>,
    11 KB (1,952 words) - 07:43, 9 August 2021
  • ...system at all, used certain letters to represent certain values (e.g. I=1, V=5, X=10, L=50, C=100, D=500, M=1000). Imagine how difficult it would be to
    4 KB (547 words) - 16:23, 30 December 2020
  • ...\,\,y\,\,z\,\,...)</math>. The magnitude of a vector, denoted <math>\|\vec{v}\|</math>, is found simply by ...d by them, <math>\|\vec{v}+\vec{w}\|^2=\|\vec{v}\|^2+\|\vec{w}\|^2+2\|\vec{v}\|\|\vec{w}\|\cos\theta</math>.
    7 KB (1,265 words) - 12:22, 14 July 2021
  • ...aQ</math> and <math>|qx-(\tilde\beta P-\tilde\alpha v)|\le\tilde\alpha|ux+v|+\tilde\beta|Qx-P|\le ...\le \frac {6a^2}q</math>. Thus, setting <math>p=\tilde\beta P-\tilde\alpha v</math>, we get <math>\left|x-\frac pq\right|<\frac {6a^2}{q^2}</math>.
    7 KB (1,290 words) - 11:18, 30 May 2019
  • ...and let <math>I</math> be a [[prime ideal]] of <math>R</math>. Then <math>V(I)=\{p\in\mathbb{A}^n\mid f(p)=0\mathrm{\ for\ all\ } f\in I\}</math> is ca
    2 KB (361 words) - 00:59, 24 January 2020
  • ...of [[vertex|vertices]], [[edge]]s, and [[face]]s, respectively. Then <math>V-E+F=2</math>.
    970 bytes (132 words) - 21:36, 1 February 2021
  • ! scope="row" | '''Mock AMC V'''
    57 KB (6,904 words) - 16:41, 1 November 2021
  • Let <math>U=2\cdot 2004^{2005}</math>, <math>V=2004^{2005}</math>, <math>W=2003\cdot 2004^{2004}</math>, <math>X=2\cdot 20 <math>\text{(A) } U-V \qquad \text{(B) } V-W \qquad \text{(C) } W-X \qquad \text{(D) } X-Y \qquad \text{(E) } Y-Z \qqu
    13 KB (1,953 words) - 21:24, 22 November 2021
  • ...ngles of a pentagon. Suppose that <math>v < w < x < y < z</math> and <math>v, w, x, y, </math> and <math>z</math> form an arithmetic sequence. Find the
    10 KB (1,548 words) - 12:06, 19 February 2020
  • Our original solid has volume equal to <math>V = \frac13 \pi r^2 h = \frac13 \pi 3^2\cdot 4 = 12 \pi</math> and has [[surf Our original solid <math>V</math> has [[surface area]] <math>A_v = \pi r^2 + \pi r \ell</math>, where
    5 KB (839 words) - 21:12, 16 December 2015
  • ...>P^{}_{}</math> pentagonal faces meet. What is the value of <math>100P+10T+V\,</math>?
    8 KB (1,275 words) - 05:55, 2 September 2021
  • .... Let <math>m/n</math> be the probability that <math>\sqrt{2+\sqrt{3}}\le |v+w|</math>, where <math>m</math> and <math>n</math> are relatively prime pos
    7 KB (1,098 words) - 16:08, 25 June 2020
  • ...he area of pentagon <math>ABCDE</math> is <math>451</math>. Find <math>u + v</math>.
    7 KB (1,208 words) - 20:04, 14 September 2020
  • ...ine{UV}</math> with <math>U</math> on <math>\overline{PQ}</math> and <math>V</math> on <math>\overline{QR}</math> such that <math>\overline{UV}</math> i
    8 KB (1,282 words) - 20:12, 19 February 2019
  • ...Using the formula for the volume of a regular tetrahedron, which is <math>V = \frac{\sqrt{2}S^3}{12}</math>, where S is the side length of the tetrahed <math>V = \frac{1}{2} \cdot \frac{\sqrt{2} \cdot (12\sqrt{2})^3}{12} = \boxed{288}<
    5 KB (865 words) - 09:17, 20 January 2021
  • ...rom vertex <math>V</math> and ending at vertex <math>A,</math> where <math>V\in\{A,B,C,D\}</math> and <math>k</math> is a positive integer. We wish to f ...math>V</math> to <math>A</math> and the paths from <math>A</math> to <math>V</math> have one-to-one correspondence. So, we must get <cmath>A_k+B_k+C_k+D
    11 KB (1,885 words) - 03:20, 19 October 2021
  • ...th>h = 15</math>, <math>l = 5</math>, <math>w = 10</math>. Therefore <math>V = 5 \cdot 10 \cdot 15 = \boxed{750}</math>
    2 KB (346 words) - 12:13, 22 July 2020
  • ...(x)</math> are also roots of <math>f(x)</math>. Let these roots be <math>u,v</math>. We get the system If we multiply the first equation by <math>v^{16}</math> and the second by <math>u^{16}</math> we get <cmath>\begin{alig
    8 KB (1,350 words) - 13:13, 17 September 2021
  • ...lies on exactly one vertex of a square/hexagon/octagon, we have that <math>V = 12 \cdot 4 = 8 \cdot 6 = 6 \cdot 8 = 48</math>. ...h of its endpoints, the number of edges <math>E</math> is <math>\frac{3}{2}V = 72</math>.
    5 KB (811 words) - 18:10, 25 January 2021

View (previous 20 | next 20) (20 | 50 | 100 | 250 | 500)

Invalid username
Login to AoPS