Difference between revisions of "Sum and difference of powers"

(have to go, open for improvisation.)
m (LaTeX)
Line 5: Line 5:
  
 
==Differences of Powers==
 
==Differences of Powers==
If p is a positive integer and x and y are real numbers,
+
If <math>p</math> is a positive integer and <math>x</math> and <math>y</math> are real numbers,
  
 
<math>x^{p+1}-y^{p+1}=(x-y)(x^p+x^{p-1}y+\cdots +xy^{p-1}+y^p)</math>
 
<math>x^{p+1}-y^{p+1}=(x-y)(x^p+x^{p-1}y+\cdots +xy^{p-1}+y^p)</math>
  
For example,
+
For example:
  
 
<math>x^2-y^2=(x-y)(x+y)</math>
 
<math>x^2-y^2=(x-y)(x+y)</math>
Line 19: Line 19:
 
Note that the number of terms in the ''long'' factor is equal to the exponent in the expression being factored.
 
Note that the number of terms in the ''long'' factor is equal to the exponent in the expression being factored.
  
An amazing thing happens when x and y differ by 1, say, x = y+1. Then x-y = 1 and  
+
An amazing thing happens when <math>x</math> and <math>y</math> differ by <math>1</math>, say, <math>x = y+1</math>. Then <math>x-y = 1</math> and  
  
 
<math>x^{p+1}-y^{p+1}=(y+1)^{p+1}-y^{p+1}</math>
 
<math>x^{p+1}-y^{p+1}=(y+1)^{p+1}-y^{p+1}</math>
Line 25: Line 25:
 
<math>=(y+1)^p+(y+1)^{p-1}y+\cdots +(y+1)y^{p-1} +y^p</math>.
 
<math>=(y+1)^p+(y+1)^{p-1}y+\cdots +(y+1)y^{p-1} +y^p</math>.
  
For example,
+
For example:
  
 
<math>(y+1)^2-y^2=(y+1)+y</math>
 
<math>(y+1)^2-y^2=(y+1)+y</math>
Line 33: Line 33:
 
<math>(y+1)^4-y^4=(y+1)^3+(y+1)^2y+(y+1)y^2+y^3</math>
 
<math>(y+1)^4-y^4=(y+1)^3+(y+1)^2y+(y+1)y^2+y^3</math>
  
If we also know that <math>y\geq 0</math> then
+
If we also know that <math>y\geq 0</math> then:
  
 
<math>2y\leq (y+1)^2-y^2\leq 2(y+1)</math>
 
<math>2y\leq (y+1)^2-y^2\leq 2(y+1)</math>

Revision as of 18:43, 8 July 2008

The sum and difference of powers are powerful factoring techniques that, respectively, factor a sum or a difference of certain powers.

Sums of Powers

$a^{2n+1}+b^{2n+1}=(a+b)(a^{2n}-a^{2n-1}b+a^{2n-2}b^2-\ldots-ab^{2n-1}+b^{2n})$

Differences of Powers

If $p$ is a positive integer and $x$ and $y$ are real numbers,

$x^{p+1}-y^{p+1}=(x-y)(x^p+x^{p-1}y+\cdots +xy^{p-1}+y^p)$

For example:

$x^2-y^2=(x-y)(x+y)$

$x^3-y^3=(x-y)(x^2+xy+y^2)$

$x^4-y^4=(x-y)(x^3+x^2y+xy^2+y^3)$

Note that the number of terms in the long factor is equal to the exponent in the expression being factored.

An amazing thing happens when $x$ and $y$ differ by $1$, say, $x = y+1$. Then $x-y = 1$ and

$x^{p+1}-y^{p+1}=(y+1)^{p+1}-y^{p+1}$

$=(y+1)^p+(y+1)^{p-1}y+\cdots +(y+1)y^{p-1} +y^p$.

For example:

$(y+1)^2-y^2=(y+1)+y$

$(y+1)^3-y^3=(y+1)^2+(y+1)y+y^2$

$(y+1)^4-y^4=(y+1)^3+(y+1)^2y+(y+1)y^2+y^3$

If we also know that $y\geq 0$ then:

$2y\leq (y+1)^2-y^2\leq 2(y+1)$

$3y^2\leq (y+1)^3-y^3\leq 3(y+1)^2$

$4y^3\leq (y+1)^4-y^4\leq 4(y+1)^3$

$(p+1)y^p\leq (y+1)^{p+1}-y^{p+1}\leq (p+1)(y+1)^p$

See Also

This article is a stub. Help us out by expanding it.