Difference between revisions of "Titu's Lemma"

(Created page with "Titu's lemma states that: <cmath> \frac{ a_1^2 } { b_1 } + \frac{ a_2 ^2 } { b_2 } + \cdots + \frac{ a_n ^2 } { b_n } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^2 } { b_1 + b_2...")
 
Line 3: Line 3:
 
<cmath> \frac{ a_1^2 } { b_1 } + \frac{ a_2 ^2 } { b_2 } + \cdots + \frac{ a_n ^2 } { b_n } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^2 } { b_1 + b_2 + \cdots+ b_n }. </cmath>
 
<cmath> \frac{ a_1^2 } { b_1 } + \frac{ a_2 ^2 } { b_2 } + \cdots + \frac{ a_n ^2 } { b_n } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^2 } { b_1 + b_2 + \cdots+ b_n }. </cmath>
  
It is a direct consequence of Cauchy-Schwarz theorem
+
It is a direct consequence of Cauchy-Schwarz theorem.
 +
 
 +
Titu's lemma is named after Titu Andreescu, and is also known as T2 lemma, Engel's form, or Sedrakyan's inequality.

Revision as of 18:19, 11 October 2019

Titu's lemma states that:

\[\frac{ a_1^2 } { b_1 } + \frac{ a_2 ^2 } { b_2 } + \cdots + \frac{ a_n ^2 } { b_n } \geq \frac{ (a_1 + a_2 + \cdots+ a_n ) ^2 } { b_1 + b_2 + \cdots+ b_n }.\]

It is a direct consequence of Cauchy-Schwarz theorem.

Titu's lemma is named after Titu Andreescu, and is also known as T2 lemma, Engel's form, or Sedrakyan's inequality.