Difference between revisions of "User:Geometry285"

m (Problem 4)
(Replaced content with "Hello. This is Geometry285 G285 Mock MC Series")
(Tag: Replaced)
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
Posting here until I find a place for an upcoming mock I’m creating
+
Hello. This is Geometry285
  
{{G285 Mock Problems|year=2021|type=A}}
+
[[G285 Mock MC Series|G285 Mock MC Series]]
 
 
==Problem 1==
 
What value of <math>x</math> minimizes <math>|2^x - 1|</math>?
 
 
 
<math>\textbf{(A)}\ -1\qquad\textbf{(B)}\ 0\qquad\textbf{(C)}\ 1\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ \infty</math>
 
 
 
[[G285 MC10A Problems/Problem 1|Solution]]
 
 
 
==Problem 2==
 
Suppose Mark wanted to arrange <math>5</math> books onto a bookshelf, <math>3</math> of which are math books and <math>2</math> of which are science. If both science and math books are indistinguishable, in how many ways can Mark arrange the books on the shelf?
 
 
 
<math>\textbf{(A)}\ 6\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}\ 12\qquad\textbf{(E)}\ 15</math>
 
 
 
[[G285 MC10A Problems/Problem 2|Solution]]
 
 
 
==Problem 3==
 
Let <math>ABCD</math> be a unit square. If points <math>E</math> and <math>F</math> are chosen on <math>AB</math> and <math>CD</math> respectively such that the area of <math>\triangle AEF = \frac{3}{2} \triangle CFE</math>. What is <math>EF^2</math>?
 
 
 
<math>\textbf{(A)}\ \frac{13}{9}\qquad\textbf{(B)}\ \frac{8}{9}\qquad\textbf{(C)}\ \frac{37}{36}\qquad\textbf{(D)}\ \frac{5}{4}\qquad\textbf{(E)}\ \frac{13}{36}</math>
 
 
 
[[G285 MC10A Problems/Problem 3|Solution]]
 
 
 
==Problem 4==
 
What is the smallest value of <math>k</math> for which <cmath>2^{18k} \equiv 76 \mod 100</cmath>
 
 
 
<math>\textbf{(A)}\ 2\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 20</math>
 
 
 
[[G285 MC10A Problems/Problem 4|Solution]]
 

Latest revision as of 09:47, 12 May 2021

Hello. This is Geometry285

G285 Mock MC Series

Invalid username
Login to AoPS