

(8 intermediate revisions by the same user not shown) 
Line 1: 
Line 1: 
−  Posting here until I find a place for an upcoming mock I’m creating
 +  Hello. This is Geometry285 
   
−  {{G285 Mock Problemsyear=2021type=A}}
 +  [[G285 Mock MC SeriesG285 Mock MC Series]] 
−   
−  ==Problem 1==
 
−  What value of <math>x</math> minimizes <math>2^x^2  448</math>?
 
−   
−  <math>\textbf{(A)}\ 2\qquad\textbf{(B)}\ 1\qquad\textbf{(C)}\ 0\qquad\textbf{(D)}\ 1\qquad\textbf{(E)}\ 2</math>
 
−   
−  [[G285 MC10A Problems/Problem 1Solution]]  
−   
−  ==Problem 2==
 
−  Suppose Mark wanted to arrange <math>5</math> books onto a bookshelf, <math>3</math> of which are math books and <math>2</math> of which are science. If both science and math books are indistinguishable, in how many ways can Mark arrange the books on the shelf?
 
−   
−  <math>\textbf{(A)}\ 6\qquad\textbf{(B)}\ 8\qquad\textbf{(C)}\ 10\qquad\textbf{(D)}\ 12\qquad\textbf{(E)}\ 15</math>
 
−   
−  [[G285 MC10A Problems/Problem 2Solution]]
 
−   
−  ==Problem 3==
 
−  Let <math>ABCD</math> be a unit square. If points <math>E</math> and <math>F</math> are chosen on <math>AB</math> and <math>CD</math> respectively such that the area of <math>\triangle AEF = \frac{3}{2} \triangle CFE</math>. What is <math>EF^2</math>?
 
−   
−  <math>\textbf{(A)}\ \frac{13}{9}\qquad\textbf{(B)}\ \frac{8}{9}\qquad\textbf{(C)}\ \frac{37}{36}\qquad\textbf{(D)}\ \frac{5}{4}\qquad\textbf{(E)}\ \frac{13}{36}</math>
 
−   
−  [[G285 MC10A Problems/Problem 3Solution]]
 
−   
−  ==Problem 4==
 
−  What is the smallest value of <math>k</math> for which <cmath>2^{18k} \equiv 76 \mod 100</cmath>
 
−   
−  <math>\textbf{(A)}\ 2\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 8\qquad\textbf{(D)}\ 10\qquad\textbf{(E)}\ 20</math>
 
−   
−  [[G285 MC10A Problems/Problem 4Solution]]
 
Latest revision as of 09:47, 12 May 2021