Difference between revisions of "User:Lcz"

(I.More advanced stuff, learn some calculus)
(116 intermediate revisions by 3 users not shown)
Line 1: Line 1:
So I failed the AOIME. I don't really want to do any more AIME prep, so I have decided to go do some Oly prep :). Here's some oly notes/favorite problems
Doing OTIS Excerpts; [[Lcz's Oly Notes]]
Yay! I love inequalities. Clever algebraic manipulation+thereoms is all you need. It all comes from experience though...
OTIS Application: Finished!
AM-GM, Cauchy (Titu's Lemma as well), Muirhead, and Holder's.
Making mock AMC10 :) -Coming in August 2020?
These are cool, remember that these should only be used when the inequality is homogenized already.. These are all pretty easy to prove as well.
(Only including AMC/AIME/MathCounts things of course):
Example 1:
2018 AMC 8: 15?
(Evan Chen) Let <math>a,b,c>0</math> with <math>\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1</math>. Prove that <math>(a+1)(b+1)(c+1) \geq 64</math>
2019 AMC 8: 16 :D
We need to try to homogenize this somehow. Plugging in the expression for on the LHS for <math>1</math> won't work. If we try to do something on the left side, we'll still have a degree <math>3>-1</math>. Wait a second, why are they all <math>a+1</math>'s? Let's try to get rid of the <math>a+1</math>'s first. Well, if we add <math>3</math> to both sides of the given condition, we get
<math>\frac{a+1}{a}+\frac{b+1}{b}+\frac{c+1}{c}=4</math>, <math>\frac{(a+1)(b+1)(c+1)}{abc} \geq \frac{64}{27}</math>,
2019 AMC 10A: 88.5 welp
<math>abc \geq 27</math>
2020 AMC 10A: 108 (4 sillies)
Obviously the trivial solution <math>(3,3,3)</math> satisfies this, so we haven't made any silly mistakes. We still haven't homogenized, but now the path is clear. Multiplying both sides by
<math>(\frac{1}{a}+\frac{1}{b}+\frac{1}{c})^3=1</math>, we get
<math>\frac{(ab+bc+ac)^3}{(abc)^2} \geq 27</math>, <math>(\frac{ab+bc+ac}{3})^3 \geq (abc)^2</math>, <math>(\frac{ab+bc+ac}{3}) \geq (abc)^{2/3}</math>
2020 AMC 10B: 111 (4 sillies again welp)
Which is true from AM-GM. We shall now introduce Muirhead's...
2020 Austin Math Circle Practice Mathcounts (AMCPM): 41 (2nd written), 1st cdr :P
Example 2:
2020 AIME I: 8 (3 sillies rip)
Let <math>a,b,c>0</math> (Again Evan Chen) and <math>abc=1</math>. Prove that <math>a^2+b^2+c^2 \geq a+b+c</math>.
2020 Online mc states: 41 (2 sillies lets gooooooo)
2020 AOIME: We don't talk about this... (i can edit :P )
First we homogenize:
<math>a^2+b^2+c^2 \geq (a+b+c)(abc)^{1/3}</math>
Which is true because <math>(2,0,0)</math> majorizes <math>(\frac{4}{3}, \frac{1}{3}, \frac{1}{3})</math>
Problem 1: (2009 usamo/4): For <math>n \ge 2</math> let <math>a_1</math>, <math>a_2</math>, ..., <math>a_n</math> be positive real numbers such that
<math> (a_1+a_2+ ... +a_n)\left( {1 \over a_1} + {1 \over a_2} + ... +{1 \over a_n} \right) \le \left(n+ {1 \over 2} \right) ^2 </math>
Prove that <math>\text{max}(a_1, a_2, ... ,a_n) \le  4 \text{min}(a_1, a_2, ... , a_n)</math>.
Try to solve this on your own! Very cute problem.
Note that you'll probably only ever need Holder's for <math>3</math> variables...
Example 3 (2004 usamo/5)
Let <math>a</math>, <math>b</math>, and <math>c</math> be positive real numbers. Prove that
<math>(a^5 - a^2 + 3)(b^5 - b^2 + 3)(c^5 - c^2 + 3) \ge (a+b+c)^3</math>.
1. The <math>(a+b+c)</math> is cubed, so we try to use Holder's. The simplest way to do this is just to use <math>(a^3+1+1) . . .</math> on the LHS.
2. Now all we have to prove is that <math>a^5-a^3-a^2+1 \geq 0</math>, or <math>(a^3-1)(a^2-1) \geq 0</math>.
Now note that if <math>a<1</math>, this is true, if <math>a=1</math>, this is true, and if <math>a>1</math>, this is true as well, and as we have exhausted all cases, we are done.
==I.More advanced stuff, learn some calculus==
You will need to know derivatives for this part. It's actually quite simple. Derivative=Tangent.
Basically, the derivative of <math>x^n</math> is <math>nx^{n-1}</math>
Adding and other stuff works in the same way.
You also probably need to know
-Product Rule: <math>(fg)'=f'g+fg'</math>
-Quotient Rule: <math>(f/g)'= \frac{g'f-gf'}{g^2}</math>
-Summing: (f+g)'=f'+g'
The second derivative of a function is just applying the derivative twice. A function is convex on an interval if it's second derivative is always positive in that interval.
Jensen's inequality says that if <math>f(x)</math> is a convex function in the interval <math>I</math>, for all <math>a_i</math> in <math>I</math>,
<math>\frac{ f(a_1)+f(a_2)+f(a_3)...f(a_n)}{n} \geq f(\frac{a_1+a_2+a_3. . .a_n}{n})</math>
Karamata's inequality says that if <math>f(x)</math> is convex in the interval <math>I</math>, the sequence <math>(x_n)</math> majorizes <math>(y_n)</math>,, and all <math>x_i, y_i</math> are in <math>I</math>,
<math>f(x_1)+f(x_2)+f(x_3) . . . f(x_n) \geq f(y_1)+f(y_2)+f(y_3). . . f(y_n)</math>
TLT (Tangent Line Trick) is basically where you either
a. take the derivative, and plug in the equality cases or
b. plugging in both equality cases to form a line.
Problem 2: Show that <math>\frac{1}{\sqrt5}+\frac{1}{\sqrt4}+\frac{1}{\sqrt2}>\frac{1}{\sqrt4}+\frac{1}{\sqrt4}+\frac{1}{\sqrt3}</math>
Problem 3: Using Jensen's and Holder's, solve 2001 IMO/2:
Let <math>a,b,c</math> be positive real numbers. Prove  <math>\frac{a}{\sqrt{a^{2}+8bc}}+\frac{b}{\sqrt{b^{2}+8ca}}+\frac{c}{\sqrt{c^{2}+8ab}}\ge 1</math>.
Problem 4: (2017 usamo/6)
Find the minimum possible value of
given that <math>a,b,c,d,</math> are nonnegative real numbers such that <math>a+b+c+d=4</math>.
Problem 5: (Japanese MO 1997/6)
Prove that
<math> \frac{\left(b+c-a\right)^{2}}{\left(b+c\right)^{2}+a^{2}}+\frac{\left(c+a-b\right)^{2}}{\left(c+a\right)^{2}+b^{2}}+\frac{\left(a+b-c\right)^{2}}{\left(a+b\right)^{2}+c^{2}}\geq\frac35</math>
for any positive real numbers <math> a</math>, <math> b</math>, <math> c</math>.
Ravi Substitution for triangles. <math>(a,b,c)=(x+y, y+z, x+z)</math>.
Power Mean:
The weighted form of AM-GM is given by using weighted averages. For example, the weighted arithmetic mean of <math>x</math> and <math>y</math> with <math>3:1</math> is <math>\frac{3x+1y}{3+1}</math> and the geometric is <math>\sqrt[3+1]{x^3y}</math>. (AoPS Wiki)
More practice here:
==Function Equations==
Oops...I kind of suck at these :P
~Lcz 6/9/2020 at 12:49 CST
-Plug in <math>0</math>
-Check for linear/constant solutions first. They are usually the only ones.
-fff trick is pro
-Pointwise trap?!?
-Be aware of your domain/range. (<math>N, Q, Z, C</math>(Probably not))

Latest revision as of 20:30, 2 July 2020


Doing OTIS Excerpts; Lcz's Oly Notes

OTIS Application: Finished!

Making mock AMC10 :) -Coming in August 2020?

(Only including AMC/AIME/MathCounts things of course):

2018 AMC 8: 15?

2019 AMC 8: 16 :D

2019 AMC 10A: 88.5 welp

2020 AMC 10A: 108 (4 sillies)

2020 AMC 10B: 111 (4 sillies again welp)

2020 Austin Math Circle Practice Mathcounts (AMCPM): 41 (2nd written), 1st cdr :P

2020 AIME I: 8 (3 sillies rip)

2020 Online mc states: 41 (2 sillies lets gooooooo)

2020 AOIME: We don't talk about this... (i can edit :P )

Invalid username
Login to AoPS