User:Rowechen

Revision as of 17:43, 24 May 2020 by Rowechen (talk | contribs)

Hey how did you get to this page? If you aren't me then I have to say hello. If you are me then I must be pretty conceited to waste my time looking at my own page. If you aren't me, seriously, how did you get to this page? This is pretty cool. Well, nice meeting you! I'm going to stop wasting my time typing this up and do some math. Gtg. Bye.

Here's the AIME compilation I will be doing:

Problem 3

Let $P_1^{}$ be a regular $r~\mbox{gon}$ and $P_2^{}$ be a regular $s~\mbox{gon}$ $(r\geq s\geq 3)$ such that each interior angle of $P_1^{}$ is $\frac{59}{58}$ as large as each interior angle of $P_2^{}$. What's the largest possible value of $s_{}^{}$?

Solution

Problem 5

Given a rational number, write it as a fraction in lowest terms and calculate the product of the resulting numerator and denominator. For how many rational numbers between 0 and 1 will $20_{}^{}!$ be the resulting product?

Solution

Problem 4

In Pascal's Triangle, each entry is the sum of the two entries above it. In which row of Pascal's Triangle do three consecutive entries occur that are in the ratio $3: 4: 5$?

Solution

Problem 9

Suppose that $\sec x+\tan x=\frac{22}7$ and that $\csc x+\cot x=\frac mn,$ where $\frac mn$ is in lowest terms. Find $m+n^{}_{}.$

Solution

Problem 8

For any sequence of real numbers $A=(a_1,a_2,a_3,\ldots)$, define $\Delta A^{}_{}$ to be the sequence $(a_2-a_1,a_3-a_2,a_4-a_3,\ldots)$, whose $n^{th}$ term is $a_{n+1}-a_n^{}$. Suppose that all of the terms of the sequence $\Delta(\Delta A^{}_{})$ are $1^{}_{}$, and that $a_{19}=a_{92}^{}=0$. Find $a_1^{}$.

Solution

Problem 7

Three numbers, $a_1\,$, $a_2\,$, $a_3\,$, are drawn randomly and without replacement from the set $\{1, 2, 3, \dots, 1000\}\,$. Three other numbers, $b_1\,$, $b_2\,$, $b_3\,$, are then drawn randomly and without replacement from the remaining set of 997 numbers. Let $p\,$ be the probability that, after a suitable rotation, a brick of dimensions $a_1 \times a_2 \times a_3\,$ can be enclosed in a box of dimensions $b_1 \times b_2 \times b_3\,$, with the sides of the brick parallel to the sides of the box. If $p\,$ is written as a fraction in lowest terms, what is the sum of the numerator and denominator?

Solution

Problem 12

Let $ABCD^{}_{}$ be a tetrahedron with $AB=41^{}_{}$, $AC=7^{}_{}$, $AD=18^{}_{}$, $BC=36^{}_{}$, $BD=27^{}_{}$, and $CD=13^{}_{}$, as shown in the figure. Let $d^{}_{}$ be the distance between the midpoints of edges $AB^{}_{}$ and $CD^{}_{}$. Find $d^{2}_{}$.

AIME 1989 Problem 12.png

Solution

Problem 11

Twelve congruent disks are placed on a circle $C^{}_{}$ of radius 1 in such a way that the twelve disks cover $C^{}_{}$, no two of the disks overlap, and so that each of the twelve disks is tangent to its two neighbors. The resulting arrangement of disks is shown in the figure below. The sum of the areas of the twelve disks can be written in the form $\pi(a-b\sqrt{c})$, where $a,b,c^{}_{}$ are positive integers and $c^{}_{}$ is not divisible by the square of any prime. Find $a+b+c^{}_{}$.

[asy] unitsize(100); draw(Circle((0,0),1)); dot((0,0)); draw((0,0)--(1,0)); label("$1$", (0.5,0), S);  for (int i=0; i<12; ++i) { dot((cos(i*pi/6), sin(i*pi/6))); }  for (int a=1; a<24; a+=2) { dot(((1/cos(pi/12))*cos(a*pi/12), (1/cos(pi/12))*sin(a*pi/12))); draw(((1/cos(pi/12))*cos(a*pi/12), (1/cos(pi/12))*sin(a*pi/12))--((1/cos(pi/12))*cos((a+2)*pi/12), (1/cos(pi/12))*sin((a+2)*pi/12))); draw(Circle(((1/cos(pi/12))*cos(a*pi/12), (1/cos(pi/12))*sin(a*pi/12)), tan(pi/12))); } [/asy]

Solution

Problem 12

Rhombus $PQRS^{}_{}$ is inscribed in rectangle $ABCD^{}_{}$ so that vertices $P^{}_{}$, $Q^{}_{}$, $R^{}_{}$, and $S^{}_{}$ are interior points on sides $\overline{AB}$, $\overline{BC}$, $\overline{CD}$, and $\overline{DA}$, respectively. It is given that $PB^{}_{}=15$, $BQ^{}_{}=20$, $PR^{}_{}=30$, and $QS^{}_{}=40$. Let $m/n^{}_{}$, in lowest terms, denote the perimeter of $ABCD^{}_{}$. Find $m+n^{}_{}$.

Solution

Problem 10

Euler's formula states that for a convex polyhedron with $V\,$ vertices, $E\,$ edges, and $F\,$ faces, $V-E+F=2\,$. A particular convex polyhedron has 32 faces, each of which is either a triangle or a pentagon. At each of its $V\,$ vertices, $T\,$ triangular faces and $P^{}_{}$ pentagonal faces meet. What is the value of $100P+10T+V\,$?

Solution

Problem 13

Let $S^{}_{}$ be a subset of $\{1,2,3^{}_{},\ldots,1989\}$ such that no two members of $S^{}_{}$ differ by $4^{}_{}$ or $7^{}_{}$. What is the largest number of elements $S^{}_{}$ can have?

Solution

Problem 14

Given a positive integer $n^{}_{}$, it can be shown that every complex number of the form $r+si^{}_{}$, where $r^{}_{}$ and $s^{}_{}$ are integers, can be uniquely expressed in the base $-n+i^{}_{}$ using the integers $1,2^{}_{},\ldots,n^2$ as digits. That is, the equation

$r+si=a_m(-n+i)^m+a_{m-1}(-n+i)^{m-1}+\cdots +a_1(-n+i)+a_0$

is true for a unique choice of non-negative integer $m^{}_{}$ and digits $a_0,a_1^{},\ldots,a_m$ chosen from the set $\{0^{}_{},1,2,\ldots,n^2\}$, with $a_m\ne 0^{}){}$. We write

$r+si=(a_ma_{m-1}\ldots a_1a_0)_{-n+i}$

to denote the base $-n+i^{}_{}$ expansion of $r+si^{}_{}$. There are only finitely many integers $k+0i^{}_{}$ that have four-digit expansions

$k=(a_3a_2a_1a_0)_{-3+i^{}_{}}~~~~a_3\ne 0.$

Find the sum of all such $k^{}_{}$.

Solution

Problem 14

The rectangle $ABCD^{}_{}$ below has dimensions $AB^{}_{} = 12 \sqrt{3}$ and $BC^{}_{} = 13 \sqrt{3}$. Diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $P^{}_{}$. If triangle $ABP^{}_{}$ is cut out and removed, edges $\overline{AP}$ and $\overline{BP}$ are joined, and the figure is then creased along segments $\overline{CP}$ and $\overline{DP}$, we obtain a triangular pyramid, all four of whose faces are isosceles triangles. Find the volume of this pyramid.

AIME 1990 Problem 14.png

Solution

Problem 15

Define a positive integer $n^{}_{}$ to be a factorial tail if there is some positive integer $m^{}_{}$ such that the decimal representation of $m!$ ends with exactly $n$ zeroes. How many positive integers less than $1992$ are not factorial tails?

Solution

Problem 14

A rectangle that is inscribed in a larger rectangle (with one vertex on each side) is called unstuck if it is possible to rotate (however slightly) the smaller rectangle about its center within the confines of the larger. Of all the rectangles that can be inscribed unstuck in a 6 by 8 rectangle, the smallest perimeter has the form $\sqrt{N}\,$, for a positive integer $N\,$. Find $N\,$.

Solution

Invalid username
Login to AoPS