# Difference between revisions of "User:Temperal/The Problem Solver's Resource2"

The Problem Solver's Resource
 Introduction | Other Tips and Tricks | Methods of Proof | You are currently viewing page 2.

## Exponentials and Logarithms

This is just a quick review of logarithms and exponents; it's elementary content.

### Definitions

• Exponentials: Do you really need this one?
• Logarithms: If $b^a=x$, $\log_b{x}=a$. Note that a logarithm in base e, i.e. $\log_e{x}=a$ is notated as $\ln{x}=a$, or the natural logarithm of x. If no base is specified, then a logarithm is assumed to be in base 10.

### Rules of Exponentiation and Logarithms $a^x \cdot a^y=a^{x+y}$ $(a^x)^y=a^{xy}$ $\frac{a^x}{a^y}$=a^{x-y}$$(Error compiling LaTeX. ! Missing  inserted.)a^0=1 $, where$a\ne 0 $.$\log_b xy=\log_b x +\log_b y$$ (Error compiling LaTeX. ! Missing $inserted.)\log_b x^y=y\cdot \log_b x $$(Error compiling LaTeX. ! Missing inserted.)\log_b \frac{x}{y} =\log_b x-\log_b y$$ (Error compiling LaTeX. ! Missing$ inserted.)\log_b a=\frac{1}{\log_a b}$$(Error compiling LaTeX. ! Missing  inserted.)\log_b b=1$$ (Error compiling LaTeX. ! Missing $inserted.)\log_b a=\frac{\log_x a}{\log_x b} $, where x is a constant.$\log_1 a $and$\log_0 a$ are undefined.