Difference between revisions of "User:Temperal/The Problem Solver's Resource6"

(asdf)
(continue)
Line 10: Line 10:
 
*<math>n\equiv a\pmod{b}</math> if <math>n</math> is the remainder when <math>a</math> is divided by <math>b</math> to give an integral amount.
 
*<math>n\equiv a\pmod{b}</math> if <math>n</math> is the remainder when <math>a</math> is divided by <math>b</math> to give an integral amount.
 
==Special Notation==
 
==Special Notation==
 +
<!-- to be filled in soon -->
 
==Properties==
 
==Properties==
 
For any number there will be only one congruent number modulo <math>m</math> between <math>0</math> and <math>m-1</math>.
 
For any number there will be only one congruent number modulo <math>m</math> between <math>0</math> and <math>m-1</math>.
Line 17: Line 18:
  
 
<math>a \pmod{m} + b \pmod{m} \equiv (a + b) \pmod{m}</math>
 
<math>a \pmod{m} + b \pmod{m} \equiv (a + b) \pmod{m}</math>
<math>a \pmod{m} - b \pmod{m} \equiv (a - b) \pmod{m} </math>
+
 
 +
<math>a \pmod{m} - b \pmod{m} \equiv (a - b) \pmod{m}</math>
 +
 
 
<math>a \pmod{m} \cdot b \pmod{m} \equiv (a \cdot b) \pmod{m} </math>
 
<math>a \pmod{m} \cdot b \pmod{m} \equiv (a \cdot b) \pmod{m} </math>
  

Revision as of 19:49, 4 October 2007



The Problem Solver's Resource
Introduction | Other Tips and Tricks | Methods of Proof | You are currently viewing page 6.

Modulos

Definition

  • $n\equiv a\pmod{b}$ if $n$ is the remainder when $a$ is divided by $b$ to give an integral amount.

Special Notation

Properties

For any number there will be only one congruent number modulo $m$ between $0$ and $m-1$.

If $a\equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then $(a+c) \equiv (b+d) \pmod {m}$.


$a \pmod{m} + b \pmod{m} \equiv (a + b) \pmod{m}$

$a \pmod{m} - b \pmod{m} \equiv (a - b) \pmod{m}$

$a \pmod{m} \cdot b \pmod{m} \equiv (a \cdot b) \pmod{m}$

Back to page 5 | Continue to page 7