Difference between revisions of "Vieta's Formulas"

m (Introduction)
(Redirected page to Vieta's formulas)
(Tag: New redirect)
 
(21 intermediate revisions by 13 users not shown)
Line 1: Line 1:
'''Vieta's Formulas''', otherwise called Viète's Laws, are a set of [[equation]]s relating the [[root]]s and the [[coefficient]]s of [[polynomial]]s.
+
#REDIRECT[[Vieta's formulas]]
 
 
== Introduction ==
 
 
 
Vieta's Formulas were discovered by the French mathematician [[François Viète]].
 
Vieta's Formulas can be used to relate the sum and product of the roots of a polynomial to its coefficients. The simplest application of this is with quadratics. If we have a quadratic <math>x^2+ax+b=0</math> with solutions <math>p</math> and <math>q</math>, then we know that we can factor it as:
 
 
 
<center><math>x^2+ax+b=(x-p)(x-q)</math></center>
 
 
 
(Note that the first term is <math>x^2</math>, not <math>ax^2</math>.) Using the distributive property to expand the right side we now have
 
 
 
<center><math>x^2+ax+b=x^2-(p+q)x+pq</math></center>
 
 
 
Vieta's Formulas are often used when finding the sum and products of the roots of a quadratic in the form <math>ax^2 + bx +c</math> with roots <math>r_1</math> and <math>r_2.</math> They state that:
 
 
 
<cmath>r_1 + r_2 = -\frac{b}{a}</cmath> and <cmath>r_1 \cdot r_2 = \frac{c}{a}.</cmath>
 
 
 
We know that two polynomials are equal if and only if their coefficients are equal, so <math>x^2+ax+b=x^2-(p+q)x+pq</math> means that <math>a=-(p+q)</math> and <math>b=pq</math>. In other words, the product of the roots is equal to the constant term, and the sum of the roots is the opposite of the coefficient of the <math>x</math> term.
 
 
 
A similar set of relations for cubics can be found by expanding <math>x^3+ax^2+bx+c=(x-p)(x-q)(x-r)</math>.
 
 
 
We can state Vieta's formulas more rigorously and generally. Let <math>P(x)</math> be a polynomial of degree <math>n</math>, so <math>P(x)={a_n}x^n+{a_{n-1}}x^{n-1}+\cdots+{a_1}x+a_0</math>,
 
where the coefficient of <math>x^{i}</math> is <math>{a}_i</math> and <math>a_n \neq 0</math>. As a consequence of the [[Fundamental Theorem of Algebra]], we can also write <math>P(x)=a_n(x-r_1)(x-r_2)\cdots(x-r_n)</math>, where <math>{r}_i</math> are the roots of <math>P(x)</math>.  We thus have that
 
 
 
<center><math> a_nx^n+a_{n-1}x^{n-1}+\cdots+a_1x+a_0 = a_n(x-r_1)(x-r_2)\cdots(x-r_n).</math></center>
 
 
 
Expanding out the right-hand side gives us
 
 
 
<center><math> a_nx^n - a_n(r_1+r_2+\!\cdots\!+r_n)x^{n-1} + a_n(r_1r_2 + r_1r_3 +\! \cdots\! + r_{n-1}r_n)x^{n-2} +\! \cdots\! + (-1)^na_n r_1r_2\cdots r_n.</math></center>
 
 
 
The coefficient of <math> x^k </math> in this expression will be the <math>(n-k)</math>-th [[elementary symmetric sum]] of the <math>r_i</math>. 
 
 
 
We now have two different expressions for <math>P(x)</math>.  These must be equal.  However, the only way for two polynomials to be equal for all values of <math>x</math> is for each of their corresponding coefficients to be equal.  So, starting with the coefficient of <math> x^n </math>, we see that
 
 
 
<center><math>a_n = a_n</math></center>
 
<center><math> a_{n-1} = -a_n(r_1+r_2+\cdots+r_n)</math></center>
 
<center><math> a_{n-2} = a_n(r_1r_2+r_1r_3+\cdots+r_{n-1}r_n)</math></center>
 
<center><math>\vdots</math></center>
 
<center><math>a_0 = (-1)^n a_n r_1r_2\cdots r_n</math></center>
 
 
 
More commonly, these are written with the roots on one side and the <math>a_i</math> on the other (this can be arrived at by dividing both sides of all the equations by <math>a_n</math>).
 
 
 
If we denote <math>\sigma_k</math> as the <math>k</math>-th elementary symmetric sum, then we can write those formulas more compactly as <math>\sigma_k = (-1)^k\cdot \frac{a_{n-k}}{a_n{}}</math>, for <math>1\le k\le {n}</math>.
 
Also, <math>-b/a = p + q, c/a = p \cdot q</math>.
 

Latest revision as of 14:40, 5 November 2021

Redirect to: