# Vieta's formulas

In algebra, **Vieta's formulas** are a set of results that relate the coefficients of a polynomial to its roots. In particular, it states that the elementary symmetric polynomials of its roots can be easily expressed as a ratio between two of the polynomial's coefficients.

It is among the most ubiquitous results to circumvent finding a polynomial's roots in competition math and sees widespread usage in many math contests/tournaments.

## Statement

Let be any polynomial with complex coefficients with roots , and let be the elementary symmetric polynomial of the roots.

Vieta’s formulas then state that This can be compactly summarized as for some such that .

## Proof

Let all terms be defined as above. By the factor theorem, . We will then prove Vieta’s formulas by expanding this polynomial and comparing the resulting coefficients with the original polynomial’s coefficients.

When expanding the factorization of , each term is generated by a series of choices of whether to include or the negative root from every factor . Consider all the expanded terms of the polynomial with degree ; they are formed by multiplying a choice of negative roots, making the remaining choices in the product , and finally multiplying by the constant .

Note that adding together every multiplied choice of negative roots yields . Thus, when we expand , the coefficient of is equal to . However, we defined the coefficient of to be . Thus, , or , which completes the proof.

## Problems

Here are some problems with solutions that utilize Vieta's quadratic formulas: