# Difference between revisions of "Wooga Looga Theorem"

(→Proofs) |
|||

(10 intermediate revisions by 5 users not shown) | |||

Line 50: | Line 50: | ||

==Solution 1== | ==Solution 1== | ||

− | is this | + | One solution is this one by RedFireTruck: |

WLOG let <math>A=(0, 0)</math>, <math>B=(1, 0)</math>, <math>C=(x, y)</math>. Then <math>[ABC]=\frac12|y|</math> by Shoelace Theorem and <math>X=\left(\frac{7x+1}{8}, \frac{7y}{8}\right)</math>, <math>Y=\left(\frac{x}{8}, \frac{y}{8}\right)</math>, <math>Z=\left(\frac78, 0\right)</math>. Then <math>[XYZ]=\frac12\left|\frac{43y}{64}\right|</math> by Shoelace Theorem. Therefore the answer is <math>\boxed{\frac{43}{64}}</math>. | WLOG let <math>A=(0, 0)</math>, <math>B=(1, 0)</math>, <math>C=(x, y)</math>. Then <math>[ABC]=\frac12|y|</math> by Shoelace Theorem and <math>X=\left(\frac{7x+1}{8}, \frac{7y}{8}\right)</math>, <math>Y=\left(\frac{x}{8}, \frac{y}{8}\right)</math>, <math>Z=\left(\frac78, 0\right)</math>. Then <math>[XYZ]=\frac12\left|\frac{43y}{64}\right|</math> by Shoelace Theorem. Therefore the answer is <math>\boxed{\frac{43}{64}}</math>. | ||

+ | |||

==Solution 2== | ==Solution 2== | ||

or this solution by franzliszt: | or this solution by franzliszt: | ||

Line 69: | Line 70: | ||

According the the Wooga Looga Theorem, It is <math>\frac{49-7+1}{8^2}</math>. This is <math>\boxed{\frac{43}{64}}</math> | According the the Wooga Looga Theorem, It is <math>\frac{49-7+1}{8^2}</math>. This is <math>\boxed{\frac{43}{64}}</math> | ||

+ | |||

+ | ==Solution 4== | ||

+ | |||

+ | or this solution by ilovepizza2020: | ||

+ | |||

+ | We use the <math>\mathbf{FUNDEMENTAL~THEOREM~OF~GEOGEBRA}</math> to instantly get <math>\boxed{\frac{43}{64}}</math>. (Note: You can only use this method when you are not in a contest as this method is so overpowered that the people behind tests decided to ban it.) | ||

==Solution 5== | ==Solution 5== | ||

or this solution by eduD_looC: | or this solution by eduD_looC: | ||

− | This is a perfect application of the Adihaya Jayasharmaramankumarguptareddybavarajugopal's Lemma, which results in the answer being <math>\boxed{\frac{43}{64}}</math>. A very beautiful application, which leaves graders and readers speechless. | + | This is a perfect application of the Adihaya Jayasharmaramankumarguptareddybavarajugopal's Lemma, which results in the answer being <math>\boxed{\frac{43}{64}}</math>. A very beautiful application, which leaves graders and readers speechless. Great for math contests with proofs. |

==Solution 6== | ==Solution 6== | ||

Line 158: | Line 165: | ||

By Franzliszt | By Franzliszt | ||

− | By Wooga Looga, <math>\frac{[DEF]}{16} = \frac{3^2-3+1}{(3+1)^2}=\frac{7}{16}</math> so the answer is <math> | + | By Wooga Looga, <math>\frac{[DEF]}{16} = \frac{3^2-3+1}{(3+1)^2}=\frac{7}{16}</math> so the answer is <math>\boxed7</math>. |

==Solution 2== | ==Solution 2== | ||

Line 167: | Line 174: | ||

=Testimonials= | =Testimonials= | ||

+ | The Wooga Looga Theorem can be used to prove many problems and should be a part of any geometry textbook. | ||

+ | ~ilp2020 | ||

+ | |||

Thanks for rediscovering our theorem RedFireTruck - Foogle and Hoogle of [https://www.youtube.com/channel/UC50E9TuLIMWbOPUX45xZPaQ The Ooga Booga Tribe of The Caveman Society] | Thanks for rediscovering our theorem RedFireTruck - Foogle and Hoogle of [https://www.youtube.com/channel/UC50E9TuLIMWbOPUX45xZPaQ The Ooga Booga Tribe of The Caveman Society] | ||

Line 172: | Line 182: | ||

The Wooga Looga Theorem is EPIC POGGERS WHOLESOME 100 KEANU CHUNGUS AMAZING SKILL THEOREM!!!!!1!!!111111 -centslordm | The Wooga Looga Theorem is EPIC POGGERS WHOLESOME 100 KEANU CHUNGUS AMAZING SKILL THEOREM!!!!!1!!!111111 -centslordm | ||

− | |||

− | |||

− | |||

The Wooga Looga Theorem is amazing and can be applied to so many problems and should be taught in every school. - RedFireTruck | The Wooga Looga Theorem is amazing and can be applied to so many problems and should be taught in every school. - RedFireTruck | ||

Line 205: | Line 212: | ||

This theorem is too OP. ~bestzack66 | This theorem is too OP. ~bestzack66 | ||

− | |||

− | |||

− | |||

This is amazing! However much it looks like a joke, it is a legitimate - and powerful - theorem. -Supernova283 | This is amazing! However much it looks like a joke, it is a legitimate - and powerful - theorem. -Supernova283 | ||

Line 225: | Line 229: | ||

This is <i>almost</i> as OP as the Adihaya Jayasharmaramankumarguptareddybavarajugopal Lemma. Needs to be nerfed. -CoolCarsonTheRun | This is <i>almost</i> as OP as the Adihaya Jayasharmaramankumarguptareddybavarajugopal Lemma. Needs to be nerfed. -CoolCarsonTheRun | ||

− | I ReAlLy don't get it - Senguamar | + | [s]I ReAlLy don't get it - Senguamar[/s] HOW DARE YOU!!!! |

The Wooga Looga Theorem is the base of all geometry. It is so OP that even I don't understand how to use it. | The Wooga Looga Theorem is the base of all geometry. It is so OP that even I don't understand how to use it. | ||

You know what, this is jayasharmaramankumarguptareddybavarajugopal's lemma - Ishan | You know what, this is jayasharmaramankumarguptareddybavarajugopal's lemma - Ishan | ||

+ | |||

+ | If only I knew this on some contests that I had done previously... - JacobJB | ||

+ | |||

+ | The Wooga Looga Theorem is so pr0 that it needs to be nerfed. - rocketsri | ||

+ | |||

+ | "The Wooga Looga Theorem should be used in contests and should be part of geometry books." ~ [[User:Aops-g5-gethsemanea2|Aops-g5-gethsemanea2]] ([[User talk:Aops-g5-gethsemanea2|talk]]) 21:56, 21 December 2020 (EST) | ||

+ | |||

+ | The Wooga Looga Theorem is so OP BRUH | ||

+ | |||

+ | thank for the theorem it is trivial by 1/2 ab sin(C) formula but very helpful I have used it zero times so far in competitions so it is of great use thank - bussie |

## Latest revision as of 17:59, 21 January 2021

## Contents

# Definition

If there is and points on the sides respectively such that , then the ratio .

Created by Foogle and Hoogle of The Ooga Booga Tribe of The Caveman Society

# Proofs

## Proof 1

Proof by Gogobao:

We have:

We have:

Therefore

So we have

## Proof 2

Proof by franzliszt

Apply Barycentrics w.r.t. . Then . We can also find that . In the barycentric coordinate system, the area formula is where is a random triangle and is the reference triangle. Using this, we find that

## Proof 3

Proof by RedFireTruck:

WLOG we let , , for , . We then use Shoelace Forumla to get . We then figure out that , , and so we know that by Shoelace Formula . We know that for all so .

## Proof 4

Proof by jasperE3:

The Wooga Looga theorem is a direct application of Routh's Theorem when a=b=c.

## Proof 5

Proof by ishanvannadil2008:

Just use jayasharmaramankumarguptareddybavarajugopal's lemma. (Thanks to tenebrine)

# Application 1

## Problem

The Wooga Looga Theorem states that the solution to this problem by franzliszt:

In points are on sides such that . Find the ratio of to .

## Solution 1

One solution is this one by RedFireTruck:

WLOG let , , . Then by Shoelace Theorem and , , . Then by Shoelace Theorem. Therefore the answer is .

## Solution 2

or this solution by franzliszt:

We apply Barycentric Coordinates w.r.t. . Let . Then we find that . In the barycentric coordinate system, the area formula is where is a random triangle and is the reference triangle. Using this, we find that

## Solution 3

or this solution by aaja3427:

According the the Wooga Looga Theorem, It is . This is

## Solution 4

or this solution by ilovepizza2020:

We use the to instantly get . (Note: You can only use this method when you are not in a contest as this method is so overpowered that the people behind tests decided to ban it.)

## Solution 5

or this solution by eduD_looC:

This is a perfect application of the Adihaya Jayasharmaramankumarguptareddybavarajugopal's Lemma, which results in the answer being . A very beautiful application, which leaves graders and readers speechless. Great for math contests with proofs.

## Solution 6

or this solution by CoolJupiter:

Wow. All of your solutions are slow, compared to my sol:

By math, we have .

~CoolJupiter ^ | EVERYONE USE THIS SOLUTION IT'S BRILLIANT ~bsu1

Yes, very BRILLIANT!

~ TheAoPSLebron

## The Best Solution

By the 1+1=2 principle, we get . Definitely the best method. When asked, please say that OlympusHero taught you this method. Cuz he did.

# Application 2

## Problem

The Wooga Looga Theorem states that the solution to this problem by Matholic:

The figure below shows a triangle ABC whose area is . If , find

~LaTeX-ifyed by RP3.1415

## Solution 1

is this solution by franzliszt:

We apply Barycentric Coordinates w.r.t. . Let . Then we find that . In the barycentric coordinate system, the area formula is where is a random triangle and is the reference triangle. Using this, we find that so .

## Solution 2

or this solution by RedFireTruck:

By the Wooga Looga Theorem, . We are given that so

# Application 3

## Problem

The Wooga Looga Theorem states that the solution to this problem by RedFireTruck:

Find the ratio if and in the diagram below.

## Solution 1

is this solution by franzliszt:

By the Wooga Looga Theorem, . Notice that is the medial triangle of **Wooga Looga Triangle ** of . So and by Chain Rule ideas.

## Solution 2

or this solution by franzliszt:

Apply Barycentrics w.r.t. so that . Then . And .

In the barycentric coordinate system, the area formula is where is a random triangle and is the reference triangle. Using this, we find that

# Application 4

## Problem

Let be a triangle and be points on sides and respectively. We have that and similar for the other sides. If the area of triangle is , then what is the area of triangle ? (By ilovepizza2020)

## Solution 1

By Franzliszt

By Wooga Looga, so the answer is .

## Solution 2

By franzliszt

Apply Barycentrics w.r.t. . Then . We can also find that . In the barycentric coordinate system, the area formula is where is a random triangle and is the reference triangle. Using this, we find thatSo the answer is .

# Testimonials

The Wooga Looga Theorem can be used to prove many problems and should be a part of any geometry textbook. ~ilp2020

Thanks for rediscovering our theorem RedFireTruck - Foogle and Hoogle of The Ooga Booga Tribe of The Caveman Society

Franzlist is wooga looga howsopro - volkie boy

The Wooga Looga Theorem is EPIC POGGERS WHOLESOME 100 KEANU CHUNGUS AMAZING SKILL THEOREM!!!!!1!!!111111 -centslordm

The Wooga Looga Theorem is amazing and can be applied to so many problems and should be taught in every school. - RedFireTruck

The Wooga Looga Theorem is the best. -aaja3427

The Wooga Looga Theorem is needed for everything and it is great-hi..

The Wooga Looga Theorem was made by the author of the 5th Testimonial, RedFireTruck, which means they are the ooga booga tribe... proof: go to https://www.youtube.com/channel/UC50E9TuLIMWbOPUX45xZPaQ and click "about". now copy and paste the aops URL. you got RedFireTruck! Great Job! now go check out his thread for post milestones, https://artofproblemsolving.com/community/c3h2319596, and give him a friend request! -FPT

This theorem has helped me with school and I am no longer failing my math class. -mchang

"I can't believe AoPS books don't have this amazing theorem. If you need help with math, you can depend on caveman." ~CoolJupiter

Before the Wooga Looga Theorem, I had NO IDEA how to solve any hard geo. But, now that I've learned it, I can solve hard geo in 7 seconds ~ ilp2020 (2nd testimonial by me)

Too powerful... ~franzliszt

The Wooga Looga Theorem is so pro ~ ac142931

It is so epic and awesome that it will blow the minds of people if they saw this ~ ac142931(2nd testimonial by me)

This theorem changed my life... ~ samrocksnature

Math competitions need to ban the use of the Wooga Looga Theorem, it's just too good. ~ jasperE3

It actually can be. I never thought I'd say this, but the Wooga Looga theorem is a legit theorem. ~ jasperE3

This is franzliszt and I endorse this theorem. ~franzliszt

This theorem is too OP. ~bestzack66

This is amazing! However much it looks like a joke, it is a legitimate - and powerful - theorem. -Supernova283

Wooga Looga Theorem is extremely useful. Someone needs to make a handout on this so everyone can obtain the power of Wooga Looga ~RP3.1415

The Wooga Looga cavemen were way ahead of their time. Good job (dead) guys! -HIA2020

It's like the Ooga Booga Theorem (also OP), but better!!! - BobDBuilder321

The Wooga Looga Theorem is a special case of [url=https://en.wikipedia.org/wiki/Routh%27s_theorem]Routh's Theorem.[/url] So this wiki article is DEFINITELY needed. -peace

I actually thought this was a joke theorem until I read this page - HumanCalculator9

I endorse the Wooga Looga theorem for its utter usefulness and seriousness. -HamstPan38825

This is *almost* as OP as the Adihaya Jayasharmaramankumarguptareddybavarajugopal Lemma. Needs to be nerfed. -CoolCarsonTheRun

[s]I ReAlLy don't get it - Senguamar[/s] HOW DARE YOU!!!!

The Wooga Looga Theorem is the base of all geometry. It is so OP that even I don't understand how to use it.

You know what, this is jayasharmaramankumarguptareddybavarajugopal's lemma - Ishan

If only I knew this on some contests that I had done previously... - JacobJB

The Wooga Looga Theorem is so pr0 that it needs to be nerfed. - rocketsri

"The Wooga Looga Theorem should be used in contests and should be part of geometry books." ~ Aops-g5-gethsemanea2 (talk) 21:56, 21 December 2020 (EST)

The Wooga Looga Theorem is so OP BRUH

thank for the theorem it is trivial by 1/2 ab sin(C) formula but very helpful I have used it zero times so far in competitions so it is of great use thank - bussie