Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
Polynomial Minimization
ReticulatedPython   4
N May 21, 2025 by jasperE3
Consider the polynomial $$p(x)=x^{n+1}-x^{n}$$, where $x, n \in \mathbb{R+}.$

(a) Prove that the minimum value of $p(x)$ always occurs at $x=\frac{n}{n+1}.$
4 replies
ReticulatedPython
May 6, 2025
jasperE3
May 21, 2025
2019 SMT Team Round - Stanford Math Tournament
parmenides51   19
N May 14, 2025 by SomeonecoolLovesMaths
p1. Given $x + y = 7$, find the value of x that minimizes $4x^2 + 12xy + 9y^2$.


p2. There are real numbers $b$ and $c$ such that the only $x$-intercept of $8y = x^2 + bx + c$ equals its $y$-intercept. Compute $b + c$.



p3. Consider the set of $5$ digit numbers $ABCDE$ (with $A \ne 0$) such that $A+B = C$, $B+C = D$, and $C + D = E$. What’s the size of this set?


p4. Let $D$ be the midpoint of $BC$ in $\vartriangle ABC$. A line perpendicular to D intersects $AB$ at $E$. If the area of $\vartriangle ABC$ is four times that of the area of $\vartriangle BDE$, what is $\angle ACB$ in degrees?


p5. Define the sequence $c_0, c_1, ...$ with $c_0 = 2$ and $c_k = 8c_{k-1} + 5$ for $k > 0$. Find $\lim_{k \to \infty} \frac{c_k}{8^k}$.


p6. Find the maximum possible value of $|\sqrt{n^2 + 4n + 5} - \sqrt{n^2 + 2n + 5}|$.


p7. Let $f(x) = \sin^8 (x) + \cos^8(x) + \frac38 \sin^4 (2x)$. Let $f^{(n)}$ (x) be the $n$th derivative of $f$. What is the largest integer $a$ such that $2^a$ divides $f^{(2020)}(15^o)$?


p8. Let $R^n$ be the set of vectors $(x_1, x_2, ..., x_n)$ where $x_1, x_2,..., x_n$ are all real numbers. Let $||(x_1, . . . , x_n)||$ denote $\sqrt{x^2_1 +... + x^2_n}$. Let $S$ be the set in $R^9$ given by $$S = \{(x, y, z) : x, y, z \in R^3 , 1 = ||x|| = ||y - x|| = ||z -y||\}.$$If a point $(x, y, z)$ is uniformly at random from $S$, what is $E[||z||^2]$?


p9. Let $f(x)$ be the unique integer between $0$ and $x - 1$, inclusive, that is equivalent modulo $x$ to $\left( \sum^2_{i=0} {{x-1} \choose i} ((x - 1 - i)! + i!) \right)$. Let $S$ be the set of primes between $3$ and $30$, inclusive. Find $\sum_{x\in S}^{f(x)}$.


p10. In the Cartesian plane, consider a box with vertices $(0, 0)$,$\left( \frac{22}{7}, 0\right)$,$(0, 24)$,$\left( \frac{22}{7}, 4\right)$. We pick an integer $a$ between $1$ and $24$, inclusive, uniformly at random. We shoot a puck from $(0, 0)$ in the direction of $\left( \frac{22}{7}, a\right)$ and the puck bounces perfectly around the box (angle in equals angle out, no friction) until it hits one of the four vertices of the box. What is the expected number of times it will hit an edge or vertex of the box, including both when it starts at $(0, 0)$ and when it ends at some vertex of the box?


p11. Sarah is buying school supplies and she has $\$2019$. She can only buy full packs of each of the following items. A pack of pens is $\$4$, a pack of pencils is $\$3$, and any type of notebook or stapler is $\$1$. Sarah buys at least $1$ pack of pencils. She will either buy $1$ stapler or no stapler. She will buy at most $3$ college-ruled notebooks and at most $2$ graph paper notebooks. How many ways can she buy school supplies?


p12. Let $O$ be the center of the circumcircle of right triangle $ABC$ with $\angle ACB = 90^o$. Let $M$ be the midpoint of minor arc $AC$ and let $N$ be a point on line $BC$ such that $MN \perp BC$. Let $P$ be the intersection of line $AN$ and the Circle $O$ and let $Q$ be the intersection of line $BP$ and $MN$. If $QN = 2$ and $BN = 8$, compute the radius of the Circle $O$.


p13. Reduce the following expression to a simplified rational $$\frac{1}{1 - \cos \frac{\pi}{9}}+\frac{1}{1 - \cos \frac{5 \pi}{9}}+\frac{1}{1 - \cos \frac{7 \pi}{9}}$$

p14. Compute the following integral $\int_0^{\infty} \log (1 + e^{-t})dt$.


p15. Define $f(n)$ to be the maximum possible least-common-multiple of any sequence of positive integers which sum to $n$. Find the sum of all possible odd $f(n)$


PS. You should use hide for answers. Collected here.
19 replies
parmenides51
Feb 6, 2022
SomeonecoolLovesMaths
May 14, 2025
Calculus BC help
needcalculusasap45   7
N Apr 20, 2025 by ehz2701
So basically, I have the AP Calculus BC exam in less than a month, and I have only covered until Unit 6 or 7 of the cirriculum. I am self studying this course (no teacher) and have not had much time to study bc of 6 other APs. I need to finish 8, 9, and 10 in less than 2 weeks. What can I do ? I would appreciate any help or resources anyone could provide. Could I just learn everything from barrons and princeton? Also, I have not taken AP Calculus AB before.

7 replies
needcalculusasap45
Apr 19, 2025
ehz2701
Apr 20, 2025
Help with Competitive Geometry?
REACHAW   3
N Apr 15, 2025 by REACHAW
Hi everyone,
I'm struggling a lot with geometry. I've found algebra, number theory, and even calculus to be relatively intuitive. However, when I took geometry, I found it very challenging. I stumbled my way through the class and can do the basic 'textbook' geometry problems, but still struggle a lot with geometry in competitive math. I find myself consistently skipping the geometry problems during contests (even the easier/first ones).

It's difficult for me to see the solution path. I can do the simpler textbook tasks (eg. find congruent triangles) but not more complex ones (eg. draw these two lines to form similar triangles).

Do you have any advice, resources, or techniques I should try?
3 replies
REACHAW
Apr 14, 2025
REACHAW
Apr 15, 2025
geometry parabola problem
smalkaram_3549   10
N Apr 13, 2025 by ReticulatedPython
How would you solve this without using calculus?
10 replies
smalkaram_3549
Apr 11, 2025
ReticulatedPython
Apr 13, 2025
2012 RMT Team Round - Stanford Math Tournament
parmenides51   13
N Apr 9, 2025 by fruitmonster97
p1. How many functions $f : \{1, 2, 3, 4, 5\} \to \{1, 2, 3, 4, 5\}$ take on exactly $3$ distinct values?


p2. Let $i$ be one of the numbers $0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11$. Suppose that for all positive integers $n$, the number $n^n$ never has remainder $i$ upon division by $12$. List all possible values of $i$.


p3. A card is an ordered 4-tuple $(a_1, a_2, a_3, a_4)$ where each $a_i$ is chosen from $\{0, 1, 2\}$. A line is an (unordered) set of three (distinct) cards $\{(a_1, a_2, a_3, a_4)$,$(b_1, b_2, b_3, b_4)$,$(c_1, c_2, c_3, c_4)\}$ such that for each $i$, the numbers $a_i, b_i, c_i$ are either all the same or all different. How many different lines are there?


p4. We say that the pair of positive integers $(x, y)$, where $x < y$, is a $k$-tangent pair if we have
$\arctan \frac{1}{k} = arctan\frac{1}{x}+ arctan\frac{1}{y}$ . Compute the second largest integer that appears in a $2012$-tangent pair.


p5. Regular hexagon $A_1A_2A_3A_4A_5A_6$ has side length $1$. For $i = 1, ..., 6$, choose $B_i$ to be a point on the segment $A_iA_{i+1}$ uniformly at random, assuming the convention that $A_{j+6} = A_j$ for all integers $j$. What is the expected value of the area of hexagon $B_1B_2B_3B_4B_5B_6$?


p6. Evaluate $\sum_{n=1}^{\infty}\sum_{m=1}^{\infty}\frac{1}{nm(n + m + 1)}$.


p7. A plane in $3$-dimensional space passes through the point $(a_1, a_2, a_3)$, with $a_1$, $a_2$, and $a_3$ all positive. The plane also intersects all three coordinate axes with intercepts greater than zero (i.e. there exist positive numbers $b_1$, $b_2$, $b_3$ such that $(b_1, 0, 0)$, $(0, b_2, 0)$, and $(0, 0, b_3)$ all lie on this plane). Find, in terms of $a_1$, $a_2$, $a_3$, the minimum possible volume of the tetrahedron formed by the origin and these three intercepts.


p8. The left end of a rubber band e meters long is attached to a wall and a slightly sadistic child holds on to the right end. A point-sized ant is located at the left end of the rubber band at time $t = 0$, when it begins walking to the right along the rubber band as the child begins stretching it. The increasingly tired ant walks at a rate of $1/(ln(t + e))$ centimeters per second, while the child uniformly stretches the rubber band at a rate of one meter per second. The rubber band is infinitely stretchable and the ant and child are immortal. Compute the time in seconds, if it exists, at which the ant reaches the right end of the rubber band. If the ant never reaches the right end, answer $+\infty$.


p9. We say that two lattice points are neighboring if the distance between them is $1$. We say that a point lies at distance d from a line segment if $d$ is the minimum distance between the point and any point on the line segment. Finally, we say that a lattice point $A$ is nearby a line segment if the distance between $A$ and the line segment is no greater than the distance between the line segment and any neighbor of $A$. Find the number of lattice points that are nearby the line segment connecting the origin and the point $(1984, 2012)$.


p10. A permutation of the first n positive integers is valid if, for all $i > 1$, $i$ comes after $\left\lfloor \frac{i}{2} \right\rfloor $ in the permutation. What is the probability that a random permutation of the first $14$ integers is valid?


p11. Given that $x, y, z > 0$ and $xyz = 1$, find the range of all possible values of
$\frac{x^3 + y^3 + z^3 - x^{-3} - y^{-3} - z^{-3}}{x + y + z - x^{-1} - y^{-1} - z^{-1}}$.


p12. A triangle has sides of length $\sqrt2$, $3 + \sqrt3$, and $2\sqrt2 + \sqrt6$. Compute the area of the smallest regular polygon that has three vertices coinciding with the vertices of the given triangle.


p13. How many positive integers $n$ are there such that for any natural numbers $a, b$, we have $n | (a^2b + 1)$ implies $n | (a^2 + b)$?


p14. Find constants $a$ and $c$ such that the following limit is finite and nonzero: $c = \lim_{n \to \infty} \frac{e\left( 1- \frac{1}{n}\right)^n - 1}{n^a}$.
Give your answer in the form $(a, c)$.


p15. Sean thinks packing is hard, so he decides to do math instead. He has a rectangular sheet that he wants to fold so that it fits in a given rectangular box. He is curious to know what the optimal size of a rectangular sheet is so that it’s expected to fit well in any given box. Let a and b be positive reals with $a \le b$, and let $m$ and $n$ be independently and uniformly distributed random variables in the interval $(0, a)$. For the ordered $4$-tuple $(a, b, m, n)$, let $f(a, b, m, n)$ denote the ratio between the area of a sheet with dimension a×b and the area of the horizontal cross-section of the box with dimension $m \times n$ after the sheet has been folded in halves along each dimension until it occupies the largest possible area that will still fit in the box (because Sean is picky, the sheet must be placed with sides parallel to the box’s sides). Compute the smallest value of b/a that maximizes the expectation $f$.

PS. You had better use hide for answers.
13 replies
parmenides51
Jan 24, 2022
fruitmonster97
Apr 9, 2025
Solve the equetion
yt12   5
N Apr 3, 2025 by KevinKV01
Solve the equetion:$\sin 2x+\tan x=2$
5 replies
yt12
Mar 31, 2025
KevinKV01
Apr 3, 2025
Find the value
yt12   5
N Mar 20, 2025 by vanstraelen
Find the value of $\tan^6 ( \frac{\pi}{18}) + \tan^6(\frac{5 \pi}{18})  + \tan^6(\frac{7 \pi}{18})$
5 replies
yt12
Mar 16, 2025
vanstraelen
Mar 20, 2025
Finding Max/Min value with derivatives
POT4TO_71   4
N Mar 10, 2025 by Lankou
Knowing that the minimum/maximum value is the only point in a quadratic graph with gradient 0, we can use the latter to figure out the min/max value accordingly using basic derivatives; but do we prefer to do it this way or stick to completing the square?

Post opinions below :D
4 replies
POT4TO_71
Mar 9, 2025
Lankou
Mar 10, 2025
IOQM P10 2024
SomeonecoolLovesMaths   5
N Mar 7, 2025 by L13832
Determine the number of positive integral values of $p$ for which there exists a triangle with sides $a,b,$ and $c$ which satisfy $$a^2 + (p^2 + 9)b^2 + 9c^2 - 6ab - 6pbc = 0.$$
5 replies
SomeonecoolLovesMaths
Sep 8, 2024
L13832
Mar 7, 2025
a