Summer is a great time to explore cool problems to keep your skills sharp!  Schedule a class today!

Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
Site Support Tech support and questions about AoPS classes and materials
Tech support and questions about AoPS classes and materials
3 M G
BBookmark  VNew Topic kLocked
G
Topic
First Poster
Last Poster
IMC 2009 Day 1 P2
joybangla   3
N Yesterday at 11:23 AM by lminsl
Let $A,B,C$ be real square matrices of the same order, and suppose $A$ is invertible. Prove that
\[ (A-B)C=BA^{-1}\implies C(A-B)=A^{-1}B \]
3 replies
joybangla
Jul 15, 2014
lminsl
Yesterday at 11:23 AM
Expand into a Fourier series
Tip_pay   2
N Yesterday at 10:38 AM by Mathzeus1024
Expand the function in a Fourier series on the interval $(-\pi, \pi)$
$$f(x)=\begin{cases}
1, & -1<x\leq 0\\ 
x, & 0<x<1
\end{cases}$$
2 replies
Tip_pay
Dec 12, 2023
Mathzeus1024
Yesterday at 10:38 AM
D1041 : A generalisation of Tchebychef's Inequality
Dattier   1
N Yesterday at 7:37 AM by Dattier
Source: les dattes à Dattier
Let $f,g \in C^1([0,1])$.

Is it true that : $\min(|f'|)\times \min(|g'|) \leq 12\times \left|\int_0^1f(t)\times g(t) \text{d}t -\int_0^1f(t) \text{d}t\times \int_0^1g(t)\text{d}t\right| \leq \max(|f'|)\times \max(|g'|)$?
1 reply
Dattier
Monday at 9:29 PM
Dattier
Yesterday at 7:37 AM
Putnam 2013 A5
Kent Merryfield   10
N Monday at 10:00 PM by blackbluecar
For $m\ge 3,$ a list of $\binom m3$ real numbers $a_{ijk}$ $(1\le i<j<k\le m)$ is said to be area definite for $\mathbb{R}^n$ if the inequality \[\sum_{1\le i<j<k\le m}a_{ijk}\cdot\text{Area}(\triangle A_iA_jA_k)\ge0\] holds for every choice of $m$ points $A_1,\dots,A_m$ in $\mathbb{R}^n.$ For example, the list of four numbers $a_{123}=a_{124}=a_{134}=1, a_{234}=-1$ is area definite for $\mathbb{R}^2.$ Prove that if a list of $\binom m3$ numbers is area definite for $\mathbb{R}^2,$ then it is area definite for $\mathbb{R}^3.$
10 replies
Kent Merryfield
Dec 9, 2013
blackbluecar
Monday at 10:00 PM
Reducing the exponents for good
RobertRogo   3
N Monday at 9:22 PM by RobertRogo
Source: The national Algebra contest (Romania), 2025, Problem 3/Abstract Algebra (a bit generalized)
Let $A$ be a ring with unity such that for every $x \in A$ there exist $t_x, n_x \in \mathbb{N}^*$ such that $x^{t_x+n_x}=x^{n_x}$. Prove that
a) If $t_x \cdot 1 \in U(A), \forall x \in A$ then $x^{t_x+1}=x, \forall x \in A$
b) If there is an $x \in A$ such that $t_x \cdot 1 \notin U(A)$ then the result from a) may no longer hold.

Authors: Laurențiu Panaitopol, Dorel Miheț, Mihai Opincariu, me, Filip Munteanu
3 replies
RobertRogo
May 20, 2025
RobertRogo
Monday at 9:22 PM
If \(\prod_{i=1}^{n} (x + r_i) = \sum_{k=0}^{n} a_k x^k\), show that \[ \sum_{i=
Martin.s   1
N Monday at 7:12 PM by alexheinis
If \(\prod_{i=1}^{n} (x + r_i) \equiv \sum_{j=0}^{n} a_j x^{n-i}\), show that
\[
\sum_{i=1}^{n} \tan^{-1} r_i = \tan^{-1} \frac{a_1 - a_3 + a_5 - \cdots}{a_0 - a_2 + a_4 - \cdots}
\]and
\[
\sum_{i=1}^{n} \tanh^{-1} r_i = \tanh^{-1} \frac{a_1 + a_3 + a_5 + \cdots}{a_0 + a_2 + a_4 + \cdots}.
\]
1 reply
Martin.s
Jun 1, 2025
alexheinis
Monday at 7:12 PM
D1040 : A general and strange result
Dattier   1
N Monday at 6:35 PM by Dattier
Source: les dattes à Dattier
Let $f \in C([0,1];[0,1])$ bijective, $f(0)=0$ and $(a_k) \in [0,1]^\mathbb N$ with $ \sum \limits_{k=0}^{+\infty} a_k$ converge.

Is it true that $\sum \limits_{k=0}^{+\infty} \sqrt{f(a_k)\times f^{-1}(a_k)}$ converge?
1 reply
Dattier
May 31, 2025
Dattier
Monday at 6:35 PM
functional equation in Z
Matheo_Lucas   2
N Monday at 3:02 PM by mrtheory
Find all functions \( f : \mathbb{Z} \to \mathbb{Z} \) such that

\[
x f(2f(y) - x) + y^2 f(2x - f(y)) = \frac{f(x)^2}{x} + f(y f(y))
\]
for all \( x, y \in \mathbb{Z} \) with \( x \neq 0 \).
2 replies
Matheo_Lucas
Jan 11, 2025
mrtheory
Monday at 3:02 PM
Recurrence trouble
SomeonecoolLovesMaths   4
N Monday at 2:48 PM by Hello_Kitty
Let $0 < x_0 < y_0$ be real numbers. Define $x_{n+1} = \frac{x_n + y_n}{2}$ and $y_{n+1} = \sqrt{x_{n+1}y_n}$.
Prove that $\lim_{n \to \infty} x_n = \lim_{n \to \infty} y_n$ and hence find the limit.
4 replies
SomeonecoolLovesMaths
May 28, 2025
Hello_Kitty
Monday at 2:48 PM
Functions
mclolikoi   3
N Monday at 1:58 PM by Mathzeus1024
Let us consider f as the following function : $ f(x)= \frac {x - \sqrt{2}}{ [x  \sqrt{2} ] } $

1- Find the definition domain $ D_f $

2-Prove that $ f $ is continous on $ \sqrt{2} $

3-Study the continuity of $ f $ on $ \frac {3 \sqrt{2} }{2} $

4-Then draw the geometric representation of $ f $ on $ ] \frac {1}{ \sqrt{2} } ; 2 \sqrt{2} [ $
3 replies
mclolikoi
Sep 23, 2012
Mathzeus1024
Monday at 1:58 PM
a