Stay ahead of learning milestones! Enroll in a class over the summer!

Olympiad Algebra Algebra discussions in the High School Olympiads forum
Algebra discussions in the High School Olympiads forum
3 G
VNew Topic kLocked ?
Olympiad Algebra Algebra discussions in the High School Olympiads forum
Algebra discussions in the High School Olympiads forum
3 G
VNew Topic kLocked ?
G
Topic
First Poster
Last Poster
Find all real functions withf(x^2 + yf(z)) = xf(x) + zf(y)
Rushil   31
N 13 minutes ago by Jakjjdm
Source: INMO 2005 Problem 6
Find all functions $f : \mathbb{R} \longrightarrow \mathbb{R}$ such that \[ f(x^2 + yf(z)) = xf(x) + zf(y) , \] for all $x, y, z \in \mathbb{R}$.
31 replies
+1 w
Rushil
Aug 23, 2005
Jakjjdm
13 minutes ago
Prove that x1=x2=....=x2025
Rohit-2006   8
N an hour ago by Project_Donkey_into_M4
Source: A mock
The real numbers $x_1,x_2,\cdots,x_{2025}$ satisfy,
$$x_1+x_2=2\bar{x_1}, x_2+x_3=2\bar{x_2},\cdots, x_{2025}+x_1=2\bar{x_{2025}}$$Where {$\bar{x_1},\cdots,\bar{x_{2025}}$} is a permutation of $x_1,x_2,\cdots,x_{2025}$. Prove that $x_1=x_2=\cdots=x_{2025}$
8 replies
Rohit-2006
Apr 9, 2025
Project_Donkey_into_M4
an hour ago
function Z to Z..
Jackson0423   2
N 2 hours ago by Rasul_Gasimli
Let \( f : \mathbb{Z} \to \mathbb{Z} \) be a function satisfying
\[
f(f(x)) = x^2 - 6x + 6
\quad \text{for all} \quad x \in \mathbb{Z}.
\]Given that
\[
f(i) < f(i+1) \quad \text{for} \quad i = 0, 1, 2, 3, 4, 5,
\]find the value of
\[
f(0) + f(1) + f(2) + \cdots + f(6).
\]
2 replies
Jackson0423
Yesterday at 2:49 PM
Rasul_Gasimli
2 hours ago
Weird exponent, but ok
oVlad   11
N 2 hours ago by wassupevery1
Source: 2021 ISL A7
Let $n\geqslant 1$ be an integer, and let $x_0,x_1,\ldots,x_{n+1}$ be $n+2$ non-negative real numbers that satisfy $x_ix_{i+1}-x_{i-1}^2\geqslant 1$ for all $i=1,2,\ldots,n.$ Show that \[x_0+x_1+\cdots+x_n+x_{n+1}>\bigg(\frac{2n}{3}\bigg)^{3/2}.\]Pakawut Jiradilok and Wijit Yangjit, Thailand
11 replies
oVlad
Jul 12, 2022
wassupevery1
2 hours ago
Monic Polynomial
IstekOlympiadTeam   22
N 3 hours ago by zuat.e
Source: Romanian Masters 2017 D1 P2
Determine all positive integers $n$ satisfying the following condition: for every monic polynomial $P$ of degree at most $n$ with integer coefficients, there exists a positive integer $k\le n$ and $k+1$ distinct integers $x_1,x_2,\cdots ,x_{k+1}$ such that \[P(x_1)+P(x_2)+\cdots +P(x_k)=P(x_{k+1})\].

Note. A polynomial is monic if the coefficient of the highest power is one.
22 replies
IstekOlympiadTeam
Feb 25, 2017
zuat.e
3 hours ago
Weird Inequality Problem
Omerking   3
N 5 hours ago by Primeniyazidayi
Following inequality is given:
$$3\geq ab+bc+ca\geq \dfrac{1}{3}$$Find the range of values that can be taken by :
$1)a+b+c$
$2)abc$

Where $a,b,c$ are positive reals.
3 replies
Omerking
Today at 8:56 AM
Primeniyazidayi
5 hours ago
Divisibility of 121
kalra   1
N 5 hours ago by maxamc
Source: Own.
$5^{11m}+8^{11m}+11^{11m}+14^{11m}+17^{11m}+20^{11m}+23^{11m}+26^{11m}+29^{11m}+32^{11m}+35^{11m}$ would be divisible by $121$ for any integer values of $m$, provided $10$ is not a factor of $m$. How to prove this?
1 reply
kalra
Jun 11, 2022
maxamc
5 hours ago
Inspired by old results
sqing   1
N 6 hours ago by sqing
Source: Own
Let $ a,b,c>0 $ and $ a^2+b^2+c^2-abc=2 .$ Prove that
$$2(a+b+c) -abc \leq 5$$$$3(a+b+c) -abc \leq 8$$$$3(a+b+c) -2abc  \leq 7$$$$5(a+b+c) -2abc  \leq 13$$$$7(a+b+c) -2abc  \leq 19$$
1 reply
sqing
6 hours ago
sqing
6 hours ago
Inspired by my own results
sqing   1
N Today at 1:00 PM by sqing
Source: Own
Let $ a,b $ be reals such that $ a+b+a^2+b^2=1. $ Prove that
$$ \frac{1}{a^2+1}+\frac{1}{b^2+1} -ab\geq\frac{3(2-7\sqrt 3)}{26}$$$$ \frac{1}{ a^2+1 }+ \frac{1}{ b^2+1 }+ab\leq\frac{58+5\sqrt 3 }{26}$$$$ \frac{29+9\sqrt 3 }{13}\geq \frac{1}{a^2+1}+\frac{1}{b^2+1} -a-b\geq\frac{29-9\sqrt 3 }{13}$$$$ \frac{3+17\sqrt 3 }{13}\geq \frac{1}{ a^2+1 }+ \frac{1}{ b^2+1 }+a+b\geq\frac{3-17\sqrt 3 }{13}$$
1 reply
sqing
Today at 12:50 PM
sqing
Today at 1:00 PM
Functional equation
Amin12   46
N Today at 1:00 PM by FredAlexander
Source: Iranian 3rd round 2016 first Algebra exam
Find all function $f:\mathbb{N}\rightarrow\mathbb{N}$ such that for all $a,b\in\mathbb{N}$ ,
$(f(a)+b) f(a+f(b))=(a+f(b))^2$
46 replies
1 viewing
Amin12
Aug 13, 2016
FredAlexander
Today at 1:00 PM
a