Stay ahead of learning milestones! Enroll in a class over the summer!

G
Topic
First Poster
Last Poster
k a May Highlights and 2025 AoPS Online Class Information
jlacosta   0
May 1, 2025
May is an exciting month! National MATHCOUNTS is the second week of May in Washington D.C. and our Founder, Richard Rusczyk will be presenting a seminar, Preparing Strong Math Students for College and Careers, on May 11th.

Are you interested in working towards MATHCOUNTS and don’t know where to start? We have you covered! If you have taken Prealgebra, then you are ready for MATHCOUNTS/AMC 8 Basics. Already aiming for State or National MATHCOUNTS and harder AMC 8 problems? Then our MATHCOUNTS/AMC 8 Advanced course is for you.

Summer camps are starting next month at the Virtual Campus in math and language arts that are 2 - to 4 - weeks in duration. Spaces are still available - don’t miss your chance to have an enriching summer experience. There are middle and high school competition math camps as well as Math Beasts camps that review key topics coupled with fun explorations covering areas such as graph theory (Math Beasts Camp 6), cryptography (Math Beasts Camp 7-8), and topology (Math Beasts Camp 8-9)!

Be sure to mark your calendars for the following upcoming events:
[list][*]May 9th, 4:30pm PT/7:30pm ET, Casework 2: Overwhelming Evidence — A Text Adventure, a game where participants will work together to navigate the map, solve puzzles, and win! All are welcome.
[*]May 19th, 4:30pm PT/7:30pm ET, What's Next After Beast Academy?, designed for students finishing Beast Academy and ready for Prealgebra 1.
[*]May 20th, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 1 Math Jam, Problems 1 to 4, join the Canada/USA Mathcamp staff for this exciting Math Jam, where they discuss solutions to Problems 1 to 4 of the 2025 Mathcamp Qualifying Quiz!
[*]May 21st, 4:00pm PT/7:00pm ET, Mathcamp 2025 Qualifying Quiz Part 2 Math Jam, Problems 5 and 6, Canada/USA Mathcamp staff will discuss solutions to Problems 5 and 6 of the 2025 Mathcamp Qualifying Quiz![/list]
Our full course list for upcoming classes is below:
All classes run 7:30pm-8:45pm ET/4:30pm - 5:45pm PT unless otherwise noted.

Introductory: Grades 5-10

Prealgebra 1 Self-Paced

Prealgebra 1
Tuesday, May 13 - Aug 26
Thursday, May 29 - Sep 11
Sunday, Jun 15 - Oct 12
Monday, Jun 30 - Oct 20
Wednesday, Jul 16 - Oct 29

Prealgebra 2 Self-Paced

Prealgebra 2
Wednesday, May 7 - Aug 20
Monday, Jun 2 - Sep 22
Sunday, Jun 29 - Oct 26
Friday, Jul 25 - Nov 21

Introduction to Algebra A Self-Paced

Introduction to Algebra A
Sunday, May 11 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Wednesday, May 14 - Aug 27
Friday, May 30 - Sep 26
Monday, Jun 2 - Sep 22
Sunday, Jun 15 - Oct 12
Thursday, Jun 26 - Oct 9
Tuesday, Jul 15 - Oct 28

Introduction to Counting & Probability Self-Paced

Introduction to Counting & Probability
Thursday, May 15 - Jul 31
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Wednesday, Jul 9 - Sep 24
Sunday, Jul 27 - Oct 19

Introduction to Number Theory
Friday, May 9 - Aug 1
Wednesday, May 21 - Aug 6
Monday, Jun 9 - Aug 25
Sunday, Jun 15 - Sep 14
Tuesday, Jul 15 - Sep 30

Introduction to Algebra B Self-Paced

Introduction to Algebra B
Tuesday, May 6 - Aug 19
Wednesday, Jun 4 - Sep 17
Sunday, Jun 22 - Oct 19
Friday, Jul 18 - Nov 14

Introduction to Geometry
Sunday, May 11 - Nov 9
Tuesday, May 20 - Oct 28
Monday, Jun 16 - Dec 8
Friday, Jun 20 - Jan 9
Sunday, Jun 29 - Jan 11
Monday, Jul 14 - Jan 19

Paradoxes and Infinity
Mon, Tue, Wed, & Thurs, Jul 14 - Jul 16 (meets every day of the week!)

Intermediate: Grades 8-12

Intermediate Algebra
Sunday, Jun 1 - Nov 23
Tuesday, Jun 10 - Nov 18
Wednesday, Jun 25 - Dec 10
Sunday, Jul 13 - Jan 18
Thursday, Jul 24 - Jan 22

Intermediate Counting & Probability
Wednesday, May 21 - Sep 17
Sunday, Jun 22 - Nov 2

Intermediate Number Theory
Sunday, Jun 1 - Aug 24
Wednesday, Jun 18 - Sep 3

Precalculus
Friday, May 16 - Oct 24
Sunday, Jun 1 - Nov 9
Monday, Jun 30 - Dec 8

Advanced: Grades 9-12

Olympiad Geometry
Tuesday, Jun 10 - Aug 26

Calculus
Tuesday, May 27 - Nov 11
Wednesday, Jun 25 - Dec 17

Group Theory
Thursday, Jun 12 - Sep 11

Contest Preparation: Grades 6-12

MATHCOUNTS/AMC 8 Basics
Friday, May 23 - Aug 15
Monday, Jun 2 - Aug 18
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

MATHCOUNTS/AMC 8 Advanced
Sunday, May 11 - Aug 10
Tuesday, May 27 - Aug 12
Wednesday, Jun 11 - Aug 27
Sunday, Jun 22 - Sep 21
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Problem Series
Friday, May 9 - Aug 1
Sunday, Jun 1 - Aug 24
Thursday, Jun 12 - Aug 28
Tuesday, Jun 17 - Sep 2
Sunday, Jun 22 - Sep 21 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Monday, Jun 23 - Sep 15
Tues & Thurs, Jul 8 - Aug 14 (meets twice a week!)

AMC 10 Final Fives
Sunday, May 11 - Jun 8
Tuesday, May 27 - Jun 17
Monday, Jun 30 - Jul 21

AMC 12 Problem Series
Tuesday, May 27 - Aug 12
Thursday, Jun 12 - Aug 28
Sunday, Jun 22 - Sep 21
Wednesday, Aug 6 - Oct 22

AMC 12 Final Fives
Sunday, May 18 - Jun 15

AIME Problem Series A
Thursday, May 22 - Jul 31

AIME Problem Series B
Sunday, Jun 22 - Sep 21

F=ma Problem Series
Wednesday, Jun 11 - Aug 27

WOOT Programs
Visit the pages linked for full schedule details for each of these programs!


MathWOOT Level 1
MathWOOT Level 2
ChemWOOT
CodeWOOT
PhysicsWOOT

Programming

Introduction to Programming with Python
Thursday, May 22 - Aug 7
Sunday, Jun 15 - Sep 14 (1:00 - 2:30 pm ET/10:00 - 11:30 am PT)
Tuesday, Jun 17 - Sep 2
Monday, Jun 30 - Sep 22

Intermediate Programming with Python
Sunday, Jun 1 - Aug 24
Monday, Jun 30 - Sep 22

USACO Bronze Problem Series
Tuesday, May 13 - Jul 29
Sunday, Jun 22 - Sep 1

Physics

Introduction to Physics
Wednesday, May 21 - Aug 6
Sunday, Jun 15 - Sep 14
Monday, Jun 23 - Sep 15

Physics 1: Mechanics
Thursday, May 22 - Oct 30
Monday, Jun 23 - Dec 15

Relativity
Mon, Tue, Wed & Thurs, Jun 23 - Jun 26 (meets every day of the week!)
0 replies
jlacosta
May 1, 2025
0 replies
Angle Relationships in Triangles
steven_zhang123   0
a few seconds ago
In $\triangle ABC$, $AB > AC$. The internal angle bisector of $\angle BAC$ and the external angle bisector of $\angle BAC$ intersect the ray $BC$ at points $D$ and $E$, respectively. Given that $CE - CD = 2AC$, prove that $\angle ACB = 2\angle ABC$.
0 replies
steven_zhang123
a few seconds ago
0 replies
acute triangle and its circumcenter and orthocenter
N.T.TUAN   6
N 17 minutes ago by MathLuis
Source: USA TST 2005, Problem 2
Let $A_{1}A_{2}A_{3}$ be an acute triangle, and let $O$ and $H$ be its circumcenter and orthocenter, respectively. For $1\leq i \leq 3$, points $P_{i}$ and $Q_{i}$ lie on lines $OA_{i}$ and $A_{i+1}A_{i+2}$ (where $A_{i+3}=A_{i}$), respectively, such that $OP_{i}HQ_{i}$ is a parallelogram. Prove that
\[\frac{OQ_{1}}{OP_{1}}+\frac{OQ_{2}}{OP_{2}}+\frac{OQ_{3}}{OP_{3}}\geq 3.\]
6 replies
N.T.TUAN
May 14, 2007
MathLuis
17 minutes ago
Nice one
imnotgoodatmathsorry   3
N 17 minutes ago by Bergo1305
Source: Own
With $x,y,z >0$.Prove that: $\frac{xy}{4y+4z+x} + \frac{yz}{4z+4x+y} +\frac{zx}{4x+4y+z} \le \frac{x+y+z}{9}$
3 replies
imnotgoodatmathsorry
May 2, 2025
Bergo1305
17 minutes ago
Imtersecting two regular pentagons
Miquel-point   2
N an hour ago by ohiorizzler1434
Source: KoMaL B. 5093
The intersection of two congruent regular pentagons is a decagon with sides of $a_1,a_2,\ldots ,a_{10}$ in this order. Prove that
\[a_1a_3+a_3a_5+a_5a_7+a_7a_9+a_9a_1=a_2a_4+a_4a_6+a_6a_8+a_8a_{10}+a_{10}a_2.\]
2 replies
Miquel-point
5 hours ago
ohiorizzler1434
an hour ago
integrals
FFA21   0
3 hours ago
Source: OSSM Comp'25 P1 (HSE IMC qualification)
Find all continuous functions $f:[1,8]\to R$ that:
$\int_1^2f(t^3)^2dt+2\int_1^2sin(t)f(t^3)dt=\frac{2}{3}\int_1^8f(t)dt-\int_1^2(t^2-sin(t))^2dt$
0 replies
FFA21
3 hours ago
0 replies
Mathematical expectation 1
Tricky123   4
N 3 hours ago by solyaris
X is continuous random variable having spectrum
$(-\infty,\infty) $ and the distribution function is $F(x)$ then
$E(X)=\int_{0}^{\infty}(1-F(x)-F(-x))dx$ and find the expression of $V(x)$

Ans:- $V(x)=\int_{0}^{\infty}(2x(1-F(x)+F(-x))dx-m^{2}$

How to solve help me
4 replies
Tricky123
May 11, 2025
solyaris
3 hours ago
Prove the statement
Butterfly   5
N 3 hours ago by solyaris
Given an infinite sequence $\{x_n\} \subseteq  [0,1]$, there exists some constant $C$, for any $r>0$, among the sequence $x_n$ and $x_m$ could be chosen to satisfy $|n-m|\ge r $ and $|x_n-x_m|<\frac{C}{|n-m|}$.
5 replies
Butterfly
May 7, 2025
solyaris
3 hours ago
B.Math 2008-Integration .
mynamearzo   14
N Today at 4:02 PM by Levieee
Source: 10+2
Let $f:\mathbb{R} \to \mathbb{R}$ be a continuous function . Suppose
\[f(x)=\frac{1}{t} \int^t_0 (f(x+y)-f(y))\,dy\]
$\forall x\in \mathbb{R}$ and all $t>0$ . Then show that there exists a constant $c$ such that $f(x)=cx\ \forall x$
14 replies
mynamearzo
Apr 16, 2012
Levieee
Today at 4:02 PM
uniformly continuous of multivariable function
keroro902   1
N Today at 1:42 PM by Mathzeus1024
How can I determine which of the following functions are uniformly continuous on the given domain A?

$f \left( x, y \right) = \frac{x^3 + y^2}{x^2 + y}$ , $A = \left\{ \left( x, y
\right) \in \mathbb m{R}^2 \left|  \right.  \left| y \right| \leq \frac{x^2}{2}
%Error. "nocomma" is a bad command.
, x^2 + y^2 < 1 \right\}$

$g \left( x, y \right) = \frac{y^2 + 4 x^2}{y^2 - 4 x^2 - 1}$, $A = \left\{
\left( x, y \right) \in \mathbb m{R}^2 \left| 0 \leq x^2 - y^2 \leqslant 1
\right\} \right.$
1 reply
keroro902
Nov 2, 2012
Mathzeus1024
Today at 1:42 PM
Investigating functions
mikejoe   1
N Today at 1:08 PM by Mathzeus1024
Source: Edwards and Penney
Investigate the function $f(x) = (x-2) \sqrt{x+1}$
Also determine its domain and range.
1 reply
mikejoe
Nov 2, 2012
Mathzeus1024
Today at 1:08 PM
functional equation
pratyush   2
N Today at 12:41 PM by Mathzeus1024
For the functional equation $f(x-y)=\frac{f(x)}{f(y)}$, if f ' (0)=p and f ' (5)=q, then prove f ' (-5) = q
2 replies
pratyush
Apr 4, 2014
Mathzeus1024
Today at 12:41 PM
ISI UGB 2025 P1
SomeonecoolLovesMaths   7
N Today at 12:28 PM by SatisfiedMagma
Source: ISI UGB 2025 P1
Suppose $f \colon \mathbb{R} \longrightarrow \mathbb{R}$ is differentiable and $| f'(x)| < \frac{1}{2}$ for all $x \in \mathbb{R}$. Show that for some $x_0 \in \mathbb{R}$, $f \left( x_0 \right) = x_0$.
7 replies
SomeonecoolLovesMaths
May 11, 2025
SatisfiedMagma
Today at 12:28 PM
UMich Math
missionsqhc   1
N Today at 9:27 AM by Mathzeus1024
I was recently accepted into the University of Michigan as a math major. If anyone studies math at UMich or knows anything about the program, could you share your experience? How would you rate the program? I know UMich is well-regarded for math (among many other things) but from my understanding, it is not quite at the level of an MIT or CalTech. What math programs is it comparable to? How does the rigor of the curricula compare to other top math programs? What are the other students like—is there a thriving contest math community? How accessible are research opportunities and graduate-level classes? Are most students looking to get into pure math and become research mathematicians or are most people focused on applied fields?

Also, aside from the math program, how is UMich overall? What were the advantages and disadvantages from being at such a large school? I was admitted to the Residential College (RC) within the College of Literature, Science, and the Arts. This is supposed to emulate a liberal arts college (while still allowing me access to the resources of a major research university). Could anyone speak on the RC?

How academically-inclined are UMich students? I’ve heard the school is big on sports and school spirit. I am just concerned that there may be a lot of subpar in-state students. How is the climate of Ann Arbor and how is the city in general?

Finally, how is UMich generally regarded? I’m also considering Georgetown. Am I right in viewing the latter as more well-regarded for humanities and the former better-known for STEM?
1 reply
missionsqhc
Yesterday at 4:31 PM
Mathzeus1024
Today at 9:27 AM
Integral and Derivative Equation
ahaanomegas   6
N Today at 8:43 AM by Sagnik123Biswas
Source: Putnam 1990 B1
Find all real-valued continuously differentiable functions $f$ on the real line such that for all $x$, \[ \left( f(x) \right)^2 = \displaystyle\int_0^x \left[ \left( f(t) \right)^2 + \left( f'(t) \right)^2 \right] \, \mathrm{d}t + 1990. \]
6 replies
ahaanomegas
Jul 12, 2013
Sagnik123Biswas
Today at 8:43 AM
AD and BC meet MN at P and Q
WakeUp   6
N Apr 10, 2025 by Nari_Tom
Source: Baltic Way 2005
Let $ABCD$ be a convex quadrilateral such that $BC=AD$. Let $M$ and $N$ be the midpoints of $AB$ and $CD$, respectively. The lines $AD$ and $BC$ meet the line $MN$ at $P$ and $Q$, respectively. Prove that $CQ=DP$.
6 replies
WakeUp
Dec 28, 2010
Nari_Tom
Apr 10, 2025
AD and BC meet MN at P and Q
G H J
Source: Baltic Way 2005
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
WakeUp
1347 posts
#1 • 2 Y
Y by Adventure10, Mango247
Let $ABCD$ be a convex quadrilateral such that $BC=AD$. Let $M$ and $N$ be the midpoints of $AB$ and $CD$, respectively. The lines $AD$ and $BC$ meet the line $MN$ at $P$ and $Q$, respectively. Prove that $CQ=DP$.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Luis González
4149 posts
#2 • 1 Y
Y by Adventure10
Let $R,S$ be the midpoints of the diagonals $AC,BD.$ Since $BC=AD,$ then $NR=NS$ $\Longrightarrow$ Parallelogram $NRMS$ is a rhombus $\Longrightarrow$ $NM$ bisects $\angle RNS$ internally. Let $U \equiv AD \cap BC.$ Since $\angle CUD$ and $\angle RNS$ have corresponding parallel sides, it follows that their angle bisectors are parallel as well. By Menelaus' theorem for $\triangle UCD$ cut by $\overline{QPN},$ keeping in mind that $UP=UQ$ and $CN=ND,$ we get

$\frac{QU}{QC} \cdot \frac{CN}{ND} \cdot \frac{DP}{PU}=1  \Longrightarrow \ QC=DP.$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
jgnr
1343 posts
#3 • 2 Y
Y by Adventure10, Mango247
http://www.artofproblemsolving.com/Forum/viewtopic.php?f=47&t=377297 then use sine law.
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
sunken rock
4394 posts
#4 • 2 Y
Y by Adventure10, Mango247
It is easy to see that $MN$ is parallel to the bisector of the angle $\widehat {(BC, AD)}$, hence the triangles $\triangle MBQ$ and $\triangle AMP$ are pseudo-similar and our problem is solved then.

Best regards,
sunken rock
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
rafaello
1079 posts
#5
Y by
By Law of Sines on $\triangle MPA$ and $\triangle QMB$, $$\frac{AM}{\sin{\angle MPA}}= \frac{AP}{\sin{\angle AMP}}$$and
$$\frac{BM}{\sin{\angle MQB}}= \frac{BQ}{\sin{\angle BMQ}}$$Since, $\sin{\angle AMP}=\sin{\angle BMQ}$, we get that
$$\frac{\sin{\angle MQB}}{\sin{\angle MPA}}= \frac{AP}{BQ}.$$
By Law of Sines on $\triangle NPD$ and $\triangle QNC$, $$\frac{DN}{\sin{\angle NPD}}= \frac{DP}{\sin{\angle DNP}}$$and
$$\frac{CN}{\sin{\angle CQN}}= \frac{CQ}{\sin{\angle CNQ}}$$Since, $\sin{\angle DNP}=\sin{\angle CNQ}$, we get that
$$\frac{\sin{\angle CQN}}{\sin{\angle NPD}}= \frac{DP}{CQ}.$$Because, $\angle MQB=\angle CQN$ and $\angle MPA=\angle NPD$, we get that
$$\frac{AP}{BQ}= \frac{DP}{CQ}\Longleftrightarrow \frac{AD+DP}{DP}= \frac{BC+CQ}{CQ}\Longleftrightarrow \frac{AD}{DP}= \frac{BC}{CQ}.$$Since $BC=AD$, we get that $CQ=DP$. $\quad \square$
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
k12byda5h
104 posts
#6 • 1 Y
Y by Tudor1505
Let $S$ be the center of spiral similarity that sends $A \rightarrow B, D \rightarrow C$, $X=AD \cap BC$. Therefore, it's also the center of spiral similarity that sends $M \rightarrow N$ and $BS=AS$. Hence, $\square ABSX, \square BMQS$ are cyclic quadrilaterals, also $\square PXQS$. Hence, there is a spiral similarity center at $S$ that sends $BQ \rightarrow AP$. But $BS=AS \implies BQ = AP \implies CQ = DP$ .
Z K Y
The post below has been deleted. Click to close.
This post has been deleted. Click here to see post.
Nari_Tom
117 posts
#7
Y by
Nice solution above, but it's trivial if we use Menelaus theorem on the $\triangle EBC$, $MN$ and $\triangle EAD$, $MN$ where $E=AB \cap CD$.
We have: $ \frac{DN}{NE} *\frac{EM}{MA} *\frac {PA}{PD}=1 $ and $\frac{NC}{NE} *\frac{MB}{ME} *\frac{QB}{QC}=1 $ $\implies$ $\frac{PA}{PD}=\frac{QB}{QC}$ $\implies$ $PA=QB$.
This post has been edited 1 time. Last edited by Nari_Tom, Apr 10, 2025, 11:28 AM
Z K Y
N Quick Reply
G
H
=
a