1981 AHSME Problems/Problem 10

Problem 10

The lines $L$ and $K$ are symmetric to each other with respect to the line $y=x$. If the equation of the line $L$ is $y=ax+b$ with $a\neq 0$ and $b\neq 0$, then the equation of $K$ is $y=$

$\textbf{(A)}\ \dfrac{1}{a}x+b\qquad\textbf{(B)}\ -\dfrac{1}{a}x+b\qquad\textbf{(C)}\ \dfrac{1}{a}x-\dfrac{b}{a}\qquad\textbf{(D)}\ \dfrac{1}{a}x+\dfrac{b}{a}\qquad\textbf{(E)}\ \dfrac{1}{a}x-\dfrac{b}{a}$

Solution

If $(p, q)$ is a point on line $L$, then by symmetry $(q, p)$ must be a point on $K$. Therefore, the points on $K$ satisfy $x=ay+b$.Solving for $y$ yields $y = \dfrac xa-\dfrac ba$. $\Longrightarrow \boxed{E}$

See also

1981 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC logo.png