1981 AHSME Problems/Problem 9

Problem 9

In the adjoining figure, $PQ$ is a diagonal of the cube. If $PQ$ has length $a$, then the surface area of the cube is

[asy] import three; unitsize(1cm); size(200); currentprojection=orthographic(1/3,-1,1/2); draw((0,0,0)--(1,0,0)--(1,1,0)--(0,1,0)--cycle,black); draw((0,0,0)--(0,0,1),black); draw((0,1,0)--(0,1,1),black); draw((1,1,0)--(1,1,1),black); draw((1,0,0)--(1,0,1),black); draw((0,0,1)--(1,0,1)--(1,1,1)--(0,1,1)--cycle,black); draw((0,0,0)--(1,1,1),black); label("$P$",(0, 0, 0),NW); label("$Q$",(1, 1, 1),NE); [/asy]

$\textbf{(A)}\ 2a^2\qquad\textbf{(B)}\ 2\sqrt{2}a^2\qquad\textbf{(C)}\ 2\sqrt{3}a^2\qquad\textbf{(D)}\ 3\sqrt{3}a^2\qquad\textbf{(E)}\ 6a^2$

Solution

Because the space diagonal of a cube with side length $s$ is $s \sqrt{3},$ the side length of the cube in this problem is $\frac{a}{\sqrt{3}}.$ The surface area of the cube is therefore $6(\frac{a}{\sqrt{3}})^2=6 \cdot \frac{a^2}{3}=\boxed{2a^2},$ which is answer choice $\boxed{\text{A}}.$

See also

1981 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC logo.png