1982 AHSME Problems/Problem 8

Problem

By definition, $r! = r(r - 1) \cdots 1$ and $\binom{j}{k} = \frac {j!}{k!(j - k)!}$, where $r,j,k$ are positive integers and $k < j$. If $\binom{n}{1}, \binom{n}{2}, \binom{n}{3}$ form an arithmetic progression with $n > 3$, then $n$ equals

$\textbf{(A)}\ 5\qquad  \textbf{(B)}\ 7\qquad  \textbf{(C)}\ 9\qquad  \textbf{(D)}\ 11\qquad  \textbf{(E)}\ 12$

Solution

Since $\binom{n}{1}$, $\binom{n}{2}$, and $\binom{n}{3}$ form an arithmetic progression, $\binom{n}{2} - \binom{n}{1} = \binom{n}{3} - \binom{n}{2}$. Therefore, \[\frac{n!}{2!\cdot(n-2)!}-\frac{n!}{1!\cdot(n-1)!}=\frac{n!}{3!\cdot(n-3)!}-\frac{n!}{2!\cdot(n-2)!}.\]

Simplifying these expressions yields $\frac{n(n-1)}{2}-n = \frac {n(n-1)(n-2)}{6}-\frac{n(n-1)}{2}$. Multiplying both sides by $6$ and collecting all terms on one side yields $n^3 - 9n^2 + 14n = 0$, which factors to $n(n-7)(n-2)=0$. The solutions to this equation are $n \in \{0, 2, 7\}$, but $n > 3$ so the only valid answer is $n = \boxed{(\mathbf{B})\ 7}$.

~ab2024

See Also

1982 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC logo.png