1983 AHSME Problems/Problem 14

Problem

The units digit of $3^{1001} 7^{1002} 13^{1003}$ is

$\textbf{(A)}\ 1\qquad \textbf{(B)}\ 3\qquad \textbf{(C)}\ 5\qquad \textbf{(D)}\ 7\qquad \textbf{(E)}\ 9$

Solution 1

First, we notice that $3^0$ is congruent to $1 \ \text{(mod 10)}$, $3^1$ is $3 \ \text{(mod 10)}$, $3^2$ is $9 \ \text{(mod 10)}$, $3^3$ is $7 \ \text{(mod 10)}$, $3^4$ is $1 \ \text{(mod 10)}$, and so on. This turns out to be a cycle repeating every $4$ terms, so $3^{1001}$ is congruent to $3 \ \text{(mod 10)}$.

The number $7$ has a similar cycle, going $1, 7, 9, 3, 1, ...$ Hence we have that $7^{1002}$ is congruent to $9 \ \text{(mod 10)}$. Finally, $13^{1003}$ is congruent to $3^{1003} \equiv 7 \ \text{(mod 10)}$. Thus the required units digit is $3\cdot 9\cdot 7 \equiv 9 \ \text{(mod 10)}$, so the answer is $\boxed{\textbf{(E)}\ 9}$.

Solution 2

By Euler's Totient Theorem, if $\gcd(a, 10) = 1$, then $a^{\phi(10)} \equiv a^4 \equiv 1\ (\mathrm{mod}\ 10)$. So $3^{1001} \cdot 7^{1002} \cdot 13^{1003} \equiv 3^{1001} \cdot 7^{1002} \cdot 3^{1003} \equiv 3^{2004} \cdot 7^{1002} \equiv 3^0 \cdot 7^2 \equiv 1 \cdot 9 \equiv \boxed{\textbf{(E)}\ 9}\ (\mathrm{mod}\ 10)$.

-j314andrews

See Also

1983 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions


These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC logo.png