1987 AHSME Problems/Problem 29
Problem
Consider the sequence of numbers defined recursively by and for
by
when
is even
and by
when
is odd. Given that
, the sum of the digits of
is
Solution
If is even, then
would be negative, which is not possible. Therefore,
is odd. With this function, backwards thinking is the key. If
, then
is odd, and
. Otherwise, you keep on subtracting 1 and halving x until
.
We can use this logic to go backwards until we reach
, like so:
, so the answer is
.
See also
1987 AHSME (Problems • Answer Key • Resources) | ||
Preceded by Problem 28 |
Followed by Problem 30 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 | ||
All AHSME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.