1988 OIM Problems/Problem 4

Problem

Let $ABC$ be a triangle which sides are $a$, $b$, $c$. We divide each side of the triangle in $n$ equal segments. Let $S$ be the sum of the squares of the distances from each vertex to each of the points dividing the opposite side different from the vertices.

Prove that $\frac{S}{a^2+b^2+c^2}$ is rational.

~translated into English by Tomas Diaz. ~orders@tomasdiaz.com

Solution

Drop a perpendicular from $A$ onto $BC$, and let the foot be $M_a$. Let $p_a=BM_a$ and $q_a=CM_a$ (so $p_a+q_a=a$), and define similar values for $B$ and $C$. Furthermore, let $S_a$ represent the contributions of the distances from $A$ to the opposite side and $S_b$ and $S_c$ similarly; thus $S=S_a+S_b+S_c$.

Notice that each segment on $BC$ has length $\frac{a}{n}$; let $h_a$ be the length of the altitude from $A$ (so $h_a^2+p_a^2=b^2$ and $h_a^2+q_a^2=c^2$ by the Pythagorean Theorem). Then, by multiple uses of the Pythagorean Theorem: Sa=(ha2+(paan)2)+(ha2+(pa2an)2)++(ha2+(paa(n1)n)2)=(n1)ha2+i=1n1(paian)2 But notice that, due to symmetry, we can substitute $q_a$ in place of $p_a$ and yield the same result. Therefore, Sa=12Sa+12Sa=12((n1)ha2+i=1n1(paian)2)+12((n1)ha2+i=1n1(qaian)2)=(n1)ha2+12i=1n1((paian)2+(qaian)2)=(n1)ha2+12i=1n1(pa22iapan+i2a2n2+qa22iaqan+i2a2n2)=12(n1)ha2+12(n1)pa2+12(n1)ha2+12(n1)qa2+12i=1n1(2i2a2n22ia(pa+qa)n)=12(n1)(b2+c2)+12i=1n1(2i2a2n22ia2n)=12(n1)(b2+c2)+a2i=1n1(i2n2in) We can similarly find $S_b$ and $S_c$. Then, S=Sa+Sb+Sc=(n1)(a2+b2+c2)+(a2+b2+c2)i=1n1(i2n2in) Thus, \[\frac{S}{a^2+b^2+c^2}=n-1+\sum_{i=1}^{n-1}\left(\frac{i^2}{n^2}-\frac{i}{n}\right)\] which is rational.

~eevee9406

See also

https://www.oma.org.ar/enunciados/ibe3.htm