1998 JBMO Problems/Problem 3

Find all pairs of positive integers $(x,y)$ such that \[x^y = y^{x - y}.\]

Solution

We are given the equation: \[ x^y = y^{x - y} \] and asked to find all positive integers (x,y) satisfying it.

---

First Approach (Algebraic Parameterization)

Note that xy1, so yxy1 as well. This implies xy.

Suppose x=ab+c, y=ac for some integer a>0 and integers b,c1 with gcd(b,c)=1. This ensures that xy.

Then the original equation becomes: \[ (a^{b + c})^{a^c} = (a^c)^{a^{b + c} - a^c} \] Taking logarithms base a, we get: \[ (b + c) \cdot a^c = c \cdot (a^{b + c} - a^c) \] Divide both sides by ac: \[ b + c = c(a^b - 1) \] Now, since gcd(b,c)=1, and c divides the right-hand side, it must divide the left-hand side. Hence, c=1. Substituting back: \[ b + 1 = a^b - 1 \Rightarrow a^b = b + 2 \] We now solve for small values of b:

- If b=1: a1=1+2=3a=3 - If b=2: a2=2+2=4a=2 - Larger b gives too big values of ab, so no further solutions.

So the only valid pairs (a,b) are (3,1) and (2,2). We now compute:

- For (a,b)=(3,1), c=1:

 \(y = a^c = 3\), \(x = a^{b + c} = 3^2 = 9\)

- For (a,b)=(2,2), c=1:

 \(y = 2\), \(x = 2^3 = 8\)

So the corresponding solutions are (x,y)=(9,3) and (8,2).

---

Second Approach (Logarithmic Substitution)

Assume x=ky for some integer k>1. Then: \[ (ky)^y = y^{ky - y} = y^{y(k - 1)} \] Taking natural logarithms: \[ y \ln(ky) = y(k - 1)\ln y \Rightarrow \ln(ky) = (k - 1)\ln y \] Expanding the left-hand side: \[ \ln k + \ln y = (k - 1)\ln y \Rightarrow \ln k = (k - 2)\ln y \Rightarrow \ln y = \frac{\ln k}{k - 2} \]

For y to be an integer, the RHS must be ln of an integer.

Try small values of k: - k=3: lny=ln31=ln3y=3,x=9 - k=4: lny=ln42=ln2y=2,x=8 - k=5: lny=ln53ln(Z) ⟹ discard

No other values of k give integer y. Also, checking small y values directly:

- y=1: Then x1=1x1=1x=1(1,1) is a solution.

---

Final Answer

The only positive integer solutions to the equation xy=yxy are: \[ \boxed{(x, y) = (1, 1),\ (8, 2),\ (9, 3)} \]

We are given the equation: \[ x^y = y^{x - y} \] and asked to find all positive integers (x,y) that satisfy it.

\textbf{Step 1: Try small values of y}

We begin by checking small values of y:

- If y=1, then the equation becomes:

 \[
 x^1 = 1^{x - 1} = 1 \Rightarrow x = 1
 \]
 So \((x, y) = (1, 1)\) is a solution.

- If y=2, try x=8:

 \[
 x^y = 8^2 = 64,\quad y^{x - y} = 2^6 = 64
 \]
 So \((x, y) = (8, 2)\) is a solution.

- If y=3, try x=9:

 \[
 x^y = 9^3 = 729,\quad y^{x - y} = 3^6 = 729
 \]
 So \((x, y) = (9, 3)\) is a solution.

\textbf{Step 2: General approach using logarithms}

Assume x=ky for some integer k>1. Then the equation becomes: \[ (ky)^y = y^{ky - y} = y^{y(k - 1)} \] Taking natural logarithms: \[ y \ln(ky) = y(k - 1)\ln y \Rightarrow \ln(ky) = (k - 1)\ln y \] Expanding the left-hand side: \[ \ln k + \ln y = (k - 1)\ln y \Rightarrow \ln k = (k - 2)\ln y \Rightarrow \ln y = \frac{\ln k}{k - 2} \] So for y to be an integer, lnkk2 must be the logarithm of an integer.

Try small values of k: - If k=3: lny=ln31=ln3y=3,x=9 - If k=4: lny=ln42=ln2y=2,x=8 - If k=5: lny=ln53ln(Z), so no integer solution for y

No other values of k give integer solutions for y.

\textbf{Final Answer:} The only positive integer solutions are: \[ \boxed{(x, y) = (1, 1),\ (8, 2),\ (9, 3)} \]

See also

1998 JBMO (ProblemsResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5
All JBMO Problems and Solutions