2023 OIM Problems/Problem 2

Problem

Let $\mathbb{Z}$ be the set of integers. Find all functions $f: \mathbb{Z} \to \mathbb{Z}$ such that:

\[2023f(f(x))+2022x^2=2022f(x)+2023[f(x)]^2+1\]

for each integer $x$.

Solution

Consider the equation mod $2023$: 0f(f(x))+(1)x2(1)f(x)+0[f(x)]2+1(mod2023)x2f(x)+1(mod2023)f(x)x2+1(mod2023) Thus by definition, for every integer $x$, there exists some integer $k_x$ such that \[f(x)=x^2+1+2023k_x\] If we substitute this into the initial functional equation, we get: \[2023((x^2+1+2023k_x)^2+1+2023k_x)+2022x^2=2022(x^2+1+2023k_x)+2023(x^2+1+2023k_x)^2+1\] \[\Rightarrow 2023(1+2023k_x)+2022x^2=2022(x^2+1+2023k_x)+1\] \[\Rightarrow2023(1+2023k_x)=2022(2023k_x)+2023\] \[\Rightarrow2023(2023k_x)=2022(2023k_x)\] \[\Rightarrow k_x=0\] Thus the only functional equation possible is $\boxed{f(x)\equiv x^2+1}$, which works upon substitution.

~ eevee9406

See also

https://sites.google.com/associacaodaobm.org/oim-brasil-2023/pruebas