2025 AIME I Problems/Problem 15
Contents
[hide]Problem
Let denote the number of ordered triples of positive integers
such that
and
is a multiple of
. Find the remainder when
is divided by
.
Solution
First, state the LTE Lemma for , which we might use.
If
, then
![]()
If
, then
![]()
Then we classify all cube numbers
We can write, so
.
If
,
, there are 27 roots.
If
,
, there are 27 roots.
If
,
, there are 27 roots.
![]()
![]()
We can write, so
.
For, let
and hence
.
![]()
![]()
![]()
![]()
![]()
For
, each has 9 roots. Since
,
. They are the corresponding classes.
Same apply to. For
, each has 9 roots.
Since,
. They are the corresponding classes.
We write, so
.
For, then
.
![]()
![]()
![]()
For
, 1 root each.
,
. They are the corresponding classes.
Same apply to. For
, 1 root each.
,
. They are the corresponding classes.
Summarized the results:
![]()
: If
, then
has 27 roots.
.
![]()
: If
, then
has 9 roots.
.
![]()
: If
, then
has 1 root.
.
Otherwise,
has no roots.
We do the final combinatorial problem.
Case:
:
![]()
Case
: No solution.
Case
: No solution.
Case:
:
![]()
Case
: No solution.
Case:
:
![]()
Case
: No solution.
Case
: No solution.
Case
:
![]()
Case
: No solution.
Total is .
Hence
Answer is .
Solution 2 [Note: I think this solution has a critical flaw]
We are given that
and we wish to compute the remainder when
Since
A standard approach is to use exponential sums to detect the divisibility condition. For any integer
\[\] (Error making remote request. No response to HTTP request)
Thus, we can write
Define
Then,
Notice that when
Thus, the
It turns out that for [Note: I don't believe this is true. Try it manually for the modulo
case.]
Therefore, only the
Since
we compute
[Note: The multiplication by 5 isn't justified. The computed
above is simply wrong by a factor of 5. Unfortunately, I don't know how to fix this approach.]
~shreyan.chethan
~hashbrown2009
~ zhenghua for minor $\LaTeX$ (Error making remote request. No response to HTTP request) fixes
~jrr for Notes on the flaw in the solution
See also
2025 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 14 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.