Mock AIME I 2012 Problems/Problem 10

Problem

Consider the function $f(n,x) = \dfrac{\sin{x} + \sin{2x} + \sin{3x} + \cdots + \sin{(n-1)x} + \sin{nx}}{\cos{x} + \cos{2x} + \cos{3x} + \cdots + \cos{(n-1)x} + \cos{nx}}$. Find the sum of all $x$ for which $f(23,x)=f(33,x)$, where $x$ is measured in degrees and $100<x<200$.

Solution 1 (Sum-to-Product)

Recalling the trigonometric sum-to-product identities, we can rearrange terms and evaluate $f(23,x)$ as follows: f(23,x)=sinx+sin2x+sin3x++sin22x+sin23xcosx+cos2x+cos3x++cos22x+cos23x=(sinx+sin23x)+(sin2x+sin22x)++(sin11x+sin13x)+sin12x(cosx+cos23x)+(cos2x+cos22x)++(cos11x+cos13x)+cos12x=2sin12xcos11x+2sin12xcos10x++2sin12xcosx+sin12x2cos12xcos11x+2cos12xcos10x++2cos12xcosx+cos12x=2sin12x(cos11x+cos10x+cos9x++cosx+1)2cos12x(cos11x+cos10x++cosx+1)=sin12xcos12x=tan12x

Likewise, we can show that \[f(33,x)=\dfrac{\sin{17x}}{\cos{17x}}=\tan{17x}.\]

Now, we desire to find all $x\in(100^{\circ},200^{\circ})$ that satisfy the following equation: \[f(22,x)=f(33,x)\iff\tan{12x}=\tan{17x}.\] Because $\tan x$ has a period of $180^{\circ}$ and it only reaches any given value once per period (by virtue of being monotone increasing between its asymptotes), we know that $5x$ must then be some integer multiple of tangent's period, $180^{\circ}$. Thus, $x$ must be a multiple of $\tfrac{180^{\circ}}5=36^{\circ}$, and so the possible values of $x$ between $100^{\circ}$ and $200^{\circ}$ are $108^{\circ}$, $144^{\circ}$, and $180^{\circ}$.

Now, after checking for extraneous solutions (of which there are none), we can add these three values to compute our final answer: \[108+144+180=\boxed{432}.\]

Solution 2 (Euler's Formula)

Recall that, by Euler's Formula, \[e^{ix}=\cos x+i\sin x.\] Therefore, $\cos x= \Re(e^{ix})$, and $\sin x=\Im(e^{ix})$, where $\Re$ and $\Im$ denote the real and imaginary parts, respectively, of a given complex number.

Using this fact and the geometric series formula, we can now manipulate our expression for $f(n,x)$: f(n,x)=sin0x+sinx+sin2x+sin3x++sin(n1)x+sinnxcos0x+cosx+cos2x+cos3x++cos(n1)x+cosnx1=k=0n(eix)(k=0n(eix))1=(k=0neix)(k=0neix)1=(1e(n+1)ix1eix)(1e(n+1)ix1eix)1=((1e(n+1)ix)(1eix)(1eix)(1eix))((1e(n+1)ix)(1eix)(1eix)(1eix))1=(1e(n+1)ixeix+enix2eixeix)(1e(n+1)ixeix+enix2eixeix)1Note that, because sine is odd, 2eixeix=2cosxisinxcosx+isinxR.f(n,x)=(1e(n+1)ixeix+enix)(1e(n+1)ixeix+enix)2+eix+eix=sin(nx)+sinxsin((n+1)x)1cos((n+1)x)cosx+cos(nx)2+2cosx=sin(nx)+sinxsin((n+1)x)cos(nx)+cosxcos((n+1)x)1 Now, using the sum-to-product identities and double-angle identities, we deduce that: f(n,x)=2sin(n+12x)cos(n12x)2sin(n+12x)cos(n+12x)2cos(n+12x)cos(n12x)2cos2(n+12x)+11=2sin(n+12x)(cos(n12x)+cos(n+12x))2cos(n+12x)(cos(n12x)+cos(n+12x))=sin(n+12x)cos(n+12x)=tan(n+12x) Now, we know that $f(23,x)=\tan{12x}$, and $f(33,x)=\tan{17x}$. From here, we proceed as in Solution 1 to obtain our answer of $\boxed{432}$.

Solution 3 (Integral Calculus, non-rigorous)

Recall that the average value of some function $g(x)$ over the interval $[a,b]$ is given by \[\frac1{b-a}\int_a^b g(x)dx.\] Then, we can approximate (hopefully well enough) the above expression for $f(n,x)$ by multiplying $n$ by the average of the function $\sin(kx)$ over the interval $[0,n]$: f(n,x)=sinx+sin2x+sin3x++sin(n1)x+sinnxcosx+cos2x+cos3x++cos(n1)x+cosnxn(1n0nsin(kx)dk)n(1n0ncos(kx)dk)=(1xcos(kx))|0n(1xsin(kx))|0n=1cos(nx)sin(nx)

Now, we desire to find $x\in(100^{\circ},200^{\circ})$ that satisfy the equation: \[f(23,x)=f(33,x)\iff\frac{1-\cos(23x)}{\sin(23x)}=\frac{1-\cos(33x)}{\sin(33x)}.\] Recalling the tangent half-angle identities, we can solve as follows: 1cos(23x)sin(23x)=1cos(33x)sin(33x)tan(232x)=tan(332x)=tan(232x+5x).

Now, because $\tan x$ has a period of $180^{\circ}$ and it only reaches any given value once per period (by virtue of being monotone increasing between its asymptotes), we know that $5x$ must then be some integer multiple of tangent's period, $180^{\circ}$. Thus, $x$ must be a multiple of $\tfrac{180^{\circ}}5=36^{\circ}$, and so the possible values of $x$ between $100^{\circ}$ and $200^{\circ}$ are $108^{\circ}$, $144^{\circ}$, and $180^{\circ}$.

Now, after checking for extraneous solutions (of which there are none), we can add these three values to compute our final answer: \[108+144+180=\boxed{432}.\]

See Also