Difference between revisions of "2019 AMC 10B Problems/Problem 10"
Ironicninja (talk | contribs) (→Solution) |
Sevenoptimus (talk | contribs) m (Fixed formatting and grammar, and removed irrelevant attribution) |
||
Line 9: | Line 9: | ||
==Solution== | ==Solution== | ||
− | Notice that whatever point we pick for C, AB will be the base of the triangle. | + | Notice that whatever point we pick for <math>C</math>, <math>AB</math> will be the base of the triangle. Without loss of generality, let points <math>A</math> and <math>B</math> be <math>(0,0)</math> and <math>(0,10)</math>, since for any other combination of points, we can just rotate the plane to make them <math>(0,0)</math> and <math>(0,10)</math> under a new coordinate system. When we pick point <math>C</math>, we have to make sure that its <math>y</math>-coordinate is <math>\pm20</math>, because that's the only way the area of the triangle can be <math>100</math>. |
− | + | Now when the perimeter is minimized, by symmetry, we put <math>C</math> in the middle, at <math>(5, 20)</math>. We can easily see that <math>AC</math> and <math>BC</math> will both be <math>\sqrt{20^2+5^2} = \sqrt{425}</math>. The perimeter of this minimal triangle is <math>2\sqrt{425} + 10</math>, which is larger than <math>50</math>. Since the minimum perimeter is greater than <math>50</math>, there is no triangle that satisfies the condition, giving us <math>\boxed{\textbf{(A) }0}</math>. | |
− | |||
− | |||
==Solution 2== | ==Solution 2== | ||
− | + | Without loss of generality, let <math>AB</math> be a horizontal segment of length <math>10</math>. Now realize that <math>C</math> has to lie on one of the lines parallel to <math>AB</math> and vertically <math>20</math> units away from it. But <math>10+20+20</math> is already 50, and this doesn't form a triangle. Otherwise, without loss of generality, <math>AC<20</math>. Dropping altitude <math>CD</math>, we have a right triangle <math>ACD</math> with hypotenuse <math>AC<20</math> and leg <math>CD=20</math>, which is clearly impossible, again giving the answer as <math>\boxed{\textbf{(A) }0}</math>. | |
==See Also== | ==See Also== |
Revision as of 22:11, 17 February 2019
- The following problem is from both the 2019 AMC 10B #10 and 2019 AMC 12B #6, so both problems redirect to this page.
Contents
[hide]Problem
In a given plane, points and
are
units apart. How many points
are there in the plane such that the perimeter of
is
units and the area of
is
square units?
Solution
Notice that whatever point we pick for ,
will be the base of the triangle. Without loss of generality, let points
and
be
and
, since for any other combination of points, we can just rotate the plane to make them
and
under a new coordinate system. When we pick point
, we have to make sure that its
-coordinate is
, because that's the only way the area of the triangle can be
.
Now when the perimeter is minimized, by symmetry, we put in the middle, at
. We can easily see that
and
will both be
. The perimeter of this minimal triangle is
, which is larger than
. Since the minimum perimeter is greater than
, there is no triangle that satisfies the condition, giving us
.
Solution 2
Without loss of generality, let be a horizontal segment of length
. Now realize that
has to lie on one of the lines parallel to
and vertically
units away from it. But
is already 50, and this doesn't form a triangle. Otherwise, without loss of generality,
. Dropping altitude
, we have a right triangle
with hypotenuse
and leg
, which is clearly impossible, again giving the answer as
.
See Also
2019 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2019 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 5 |
Followed by Problem 7 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.