Difference between revisions of "2006 AMC 10B Problems/Problem 14"
Dairyqueenxd (talk | contribs) (→Solution) |
Dairyqueenxd (talk | contribs) (→Solution 2) |
||
Line 19: | Line 19: | ||
== Solution 2 == | == Solution 2 == | ||
− | Assume [[without loss of generality]] that <math>m=3</math>. We can factor the equation <math>x^2-3x+2=0</math> into <math>(x-1)(x-2)=0</math>. Therefore, <math>a=1</math> and <math>b=2</math>. Using these values, we find <math>a+\frac1b=\frac32</math> and <math>b+\frac1a=3</math>. By [[Vieta's formulas]], <math>q</math> is the product of the roots of <math>x^2-px+q=0</math>, which are <math>a+\frac1b</math> and <math>b+\frac1a</math>. Therefore, <math>q=\left(a+\frac1b\right)\left(b+\frac1a\right)=\frac32\cdot3=\ | + | Assume [[without loss of generality]] that <math>m=3</math>. We can factor the equation <math>x^2-3x+2=0</math> into <math>(x-1)(x-2)=0</math>. Therefore, <math>a=1</math> and <math>b=2</math>. Using these values, we find <math>a+\frac1b=\frac32</math> and <math>b+\frac1a=3</math>. By [[Vieta's formulas]], <math>q</math> is the product of the roots of <math>x^2-px+q=0</math>, which are <math>a+\frac1b</math> and <math>b+\frac1a</math>. Therefore, <math>q=\left(a+\frac1b\right)\left(b+\frac1a\right)=\frac32\cdot3=\boxed{\textbf{(D) }\frac92}</math>. |
== See Also == | == See Also == |
Revision as of 14:17, 26 January 2022
Contents
[hide]Problem
Let and
be the roots of the equation
. Suppose that
and
are the roots of the equation
. What is
?
Video Solution
https://youtu.be/3dfbWzOfJAI?t=457
~ pi_is_3.14
Solution
In a quadratic equation of the form , the product of the roots is
(Vieta's Formulas).
Using this property, we have that and
.
- Notice the fact that we never actually found the roots.
Solution 2
Assume without loss of generality that . We can factor the equation
into
. Therefore,
and
. Using these values, we find
and
. By Vieta's formulas,
is the product of the roots of
, which are
and
. Therefore,
.
See Also
2006 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.