Difference between revisions of "1996 AIME Problems/Problem 10"
(→Solution 3 (Only sine and cosine sum formulas)) |
|||
(7 intermediate revisions by 2 users not shown) | |||
Line 21: | Line 21: | ||
== Solution 3 (Only sine and cosine sum formulas) == | == Solution 3 (Only sine and cosine sum formulas) == | ||
− | It seems reasonable to assume that <math>\dfrac{\cos{96^{\circ}}+\sin{96^{\circ}}}{\cos{96^{\circ}}-\sin{96^{\circ}}} = \tan{\theta}</math> for some angle <math>\theta</math>. This means <cmath>\dfrac{\alpha (\cos{96^{\circ}}+\sin{96^{\circ}})}{\alpha (\cos{96^{\circ}}-\sin{96^{\circ}})} = \frac{\sin{\theta}}{\cos{\theta}}</cmath> for some constant <math>\alpha</math>. We can set <math>\alpha (\cos{96^{\circ}}+\sin{96^{\circ}}) = | + | It seems reasonable to assume that <math>\dfrac{\cos{96^{\circ}}+\sin{96^{\circ}}}{\cos{96^{\circ}}-\sin{96^{\circ}}} = \tan{\theta}</math> for some angle <math>\theta</math>. This means <cmath>\dfrac{\alpha (\cos{96^{\circ}}+\sin{96^{\circ}})}{\alpha (\cos{96^{\circ}}-\sin{96^{\circ}})} = \frac{\sin{\theta}}{\cos{\theta}}</cmath> for some constant <math>\alpha</math>. We can set <math>\alpha (\cos{96^{\circ}}+\sin{96^{\circ}}) = \sin{\theta}</math>.Note that if we have <math>\alpha</math> equal to both the sine and cosine of an angle, we can use the sine sum formula (and the cosine sum formula on the denominator). So, since <math>\sin{45^{\circ}} = \cos{45^{\circ}} = \tfrac{\sqrt{2}}{2}</math>, if <math>\alpha = \tfrac{\sqrt{2}}{2}</math> we have |
+ | <cmath>\alpha (\cos{96^{\circ}} + \sin{96^{\circ}}) = \cos{96^{\circ}} \frac{\sqrt{2}}{2} + \sin{96^{\circ}} \frac{\sqrt{2}}{2} = \cos{96^{\circ}} \sin{45^{\circ}} + \sin{96^{\circ}} \cos{45^{\circ}} = \sin({45^{\circ} + 96^{\circ}}) = \sin{141^{\circ}}</cmath> | ||
from the sine sum formula. For the denominator, from the cosine sum formula, we have | from the sine sum formula. For the denominator, from the cosine sum formula, we have | ||
− | <cmath>\alpha (\cos{96^{\circ}} - \sin{96^{\circ}) = \cos{96^{\circ}} \frac{\sqrt{2}}{2} + \sin{96^{\circ}} \frac{\sqrt{2}}{2} = \cos{96^{\circ}} \cos{45^{\circ}} + \sin{96^{\circ}} \sin{45^{\circ}} = \cos{96^{\circ} + 45^{\circ}} = \cos{141^{\circ}}.</cmath> | + | <cmath>\alpha (\cos{96^{\circ}} - \sin{96^{\circ}}) = \cos{96^{\circ}} \frac{\sqrt{2}}{2} + \sin{96^{\circ}} \frac{\sqrt{2}}{2} = \cos{96^{\circ}} \cos{45^{\circ}} + \sin{96^{\circ}} \sin{45^{\circ}} = \cos({96^{\circ} + 45^{\circ}}) = \cos{141^{\circ}}.</cmath> |
This means <math>\theta = 141^{\circ},</math> so <math>19x = 141 + 180k</math> for some positive integer <math>k</math> (since the period of tangent is <math>180^{\circ}</math>), or <math>19 x \equiv 141 \pmod{180}</math>. Note that the inverse of <math>19</math> modulo <math>180</math> is itself as <math>19^2 \equiv 361 \equiv 1 \pmod {180}</math>, so multiplying this congruence by <math>19</math> on both sides gives <math>x \equiv 2679 \equiv 159 \pmod{180}.</math> For the smallest possible <math>x</math>, we take <math>x = \boxed{159}.</math> | This means <math>\theta = 141^{\circ},</math> so <math>19x = 141 + 180k</math> for some positive integer <math>k</math> (since the period of tangent is <math>180^{\circ}</math>), or <math>19 x \equiv 141 \pmod{180}</math>. Note that the inverse of <math>19</math> modulo <math>180</math> is itself as <math>19^2 \equiv 361 \equiv 1 \pmod {180}</math>, so multiplying this congruence by <math>19</math> on both sides gives <math>x \equiv 2679 \equiv 159 \pmod{180}.</math> For the smallest possible <math>x</math>, we take <math>x = \boxed{159}.</math> | ||
+ | |||
+ | == Solution 4 == | ||
+ | Multiplying the numerator and denominator of the right-hand side by | ||
+ | <math>\cos(96^{\circ})+\sin(96^{\circ})</math>, we get | ||
+ | |||
+ | <math>{\tan(19x^{\circ})} | ||
+ | ={\frac{\cos(96^{\circ}) +\sin(96^{\circ})}{\cos(96^{\circ})-\sin(96^{\circ})}}\times{\frac{\cos(96^{\circ})+\sin(96^{\circ})}{\cos(96^{\circ})+\sin(96^{\circ})}} \\ | ||
+ | ={\frac{(\cos(96^{\circ})+\sin(96^{\circ}))^2}{\cos^2(96^{\circ})-\sin^2(96^{\circ})}} \\ | ||
+ | ={\frac{\cos^2(96^{\circ}) + 2\cos(96^{\circ})\sin(96^{\circ}) + \sin^2(96^{\circ})}{\cos(192^{\circ})}} \\ | ||
+ | ={\frac{1+\sin(192^{\circ})}{\cos(192^{\circ})}}</math> | ||
+ | |||
+ | Using the fact that <math>\tan(\theta)=\frac{\sin(\theta)}{\cos(\theta)}</math>, we get | ||
+ | <math>\tan(19x^{\circ})=\frac{\sin(19x^{\circ})}{\cos(19x^{\circ})}=\frac{1+\sin(192^{\circ})}{\cos(192^{\circ})}</math>. | ||
+ | |||
+ | Cross-multiplying, we find that | ||
+ | <math>\sin(19x^{\circ})\cos(192^{\circ})=\cos(19x^{\circ})+\cos(19x^{\circ})\sin(192^{\circ})</math>. | ||
+ | |||
+ | Rearranging the equation gives us | ||
+ | <math>\cos(19x^{\circ})=\sin(19x^{\circ})\cos(192^{\circ})-\cos(19x^{\circ})\sin(192^{\circ})</math> | ||
+ | which leads us to <math>\cos(19x^{\circ})=\sin(19x-192^{\circ})</math> by the sine difference formula. | ||
+ | |||
+ | Using the identity that | ||
+ | <math>\cos(\theta)=\sin(90^{\circ}-\theta)</math>, we find that | ||
+ | <math>\sin(90-19x^{\circ})=\sin(19x-192^{\circ})</math>. | ||
+ | |||
+ | Therefore, <math>90-19x \equiv 19x-192 \pmod{360}</math>, or <math>38x \equiv 282 \pmod{360}</math>. | ||
+ | |||
+ | We know that <math>38 \times 9=342</math> and <math>38 \times 10 \equiv 20 \pmod{360}</math> (by simple arithmetic). | ||
+ | To "make" <math>282</math> we subtract <math>10</math> three times from <math>9</math>, giving us <math>-21</math>. | ||
+ | |||
+ | Finally, because <math>360|38 \times 180</math>, we can add <math>180</math> to get that | ||
+ | <math>x=180-21=\boxed{159}</math> which is the final answer. | ||
+ | |||
+ | ~primenumbersfun | ||
+ | |||
+ | |||
+ | == Solution 5 == | ||
+ | Notice that <math>\sin 45^\circ = \cos 45^\circ</math>. Therefore, all terms in the numerator and the denominator could be multiplied by either <math>\sin 45^\circ</math> or <math>\cos 45^\circ</math>. | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | \frac{\cos 96^\circ + \sin 96^\circ}{\cos 96^\circ - \sin 96^\circ} | ||
+ | &= \frac{\cos 96^\circ \sin 45^\circ + \sin 96^\circ \cos 45^\circ}{\cos 96^\circ \cos 45^\circ - \sin 96^\circ \sin 45^\circ} \\[0.5em] | ||
+ | &= \frac{\sin(96 + 45)^\circ}{\cos(96 + 45)^\circ} \\[0.5em] | ||
+ | &= \tan 141^\circ | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | Therefore, <math>\tan19x^\circ = \tan 141^\circ</math>. In other words, <math>19x = 141 + 180k</math> for some integer <math>k</math>. | ||
+ | <cmath> | ||
+ | \begin{align*} | ||
+ | 141 + 180k &\equiv 0 \pmod{19} \\ | ||
+ | 8 + 9k &\equiv 0 \pmod{19} \\ | ||
+ | 9k &\equiv 11 \pmod{19} \\ | ||
+ | 9k &\equiv 11, 30, 49, 68, 87, 106, 125, 144 \pmod{19} \\ | ||
+ | \end{align*} | ||
+ | </cmath> | ||
+ | Substituting <math>k</math>, the smallest value of <math>19x</math> is <math>141 + 180 \cdot 16</math>, which is <math>\boxed{159}</math>. | ||
+ | |||
+ | ~MaPhyCom | ||
== See Also == | == See Also == |
Latest revision as of 03:55, 30 June 2025
Contents
Problem
Find the smallest positive integer solution to .
Solution
.
The period of the tangent function is , and the tangent function is one-to-one over each period of its domain.
Thus, .
Since , multiplying both sides by
yields
.
Therefore, the smallest positive solution is .
Solution 2
which is the same as
.
So , for some integer
.
Multiplying by
gives
.
The smallest positive solution of this is
Solution 3 (Only sine and cosine sum formulas)
It seems reasonable to assume that for some angle
. This means
for some constant
. We can set
.Note that if we have
equal to both the sine and cosine of an angle, we can use the sine sum formula (and the cosine sum formula on the denominator). So, since
, if
we have
from the sine sum formula. For the denominator, from the cosine sum formula, we have
This means
so
for some positive integer
(since the period of tangent is
), or
. Note that the inverse of
modulo
is itself as
, so multiplying this congruence by
on both sides gives
For the smallest possible
, we take
Solution 4
Multiplying the numerator and denominator of the right-hand side by
, we get
Using the fact that , we get
.
Cross-multiplying, we find that
.
Rearranging the equation gives us
which leads us to
by the sine difference formula.
Using the identity that
, we find that
.
Therefore, , or
.
We know that and
(by simple arithmetic).
To "make"
we subtract
three times from
, giving us
.
Finally, because , we can add
to get that
which is the final answer.
~primenumbersfun
Solution 5
Notice that . Therefore, all terms in the numerator and the denominator could be multiplied by either
or
.
Therefore,
. In other words,
for some integer
.
Substituting
, the smallest value of
is
, which is
.
~MaPhyCom
See Also
1996 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.