Difference between revisions of "2025 AIME II Problems/Problem 14"

m (Solution 4 (Trigonometry))
(Solution 9)
 
(44 intermediate revisions by 14 users not shown)
Line 1: Line 1:
 +
== Problem ==
 
Let <math>{\triangle ABC}</math> be a right triangle with <math>\angle A = 90^\circ</math> and <math>BC = 38.</math> There exist points <math>K</math> and <math>L</math> inside the triangle such<cmath>AK = AL = BK = CL = KL = 14.</cmath>The area of the quadrilateral <math>BKLC</math> can be expressed as <math>n\sqrt3</math> for some positive integer <math>n.</math> Find <math>n.</math>
 
Let <math>{\triangle ABC}</math> be a right triangle with <math>\angle A = 90^\circ</math> and <math>BC = 38.</math> There exist points <math>K</math> and <math>L</math> inside the triangle such<cmath>AK = AL = BK = CL = KL = 14.</cmath>The area of the quadrilateral <math>BKLC</math> can be expressed as <math>n\sqrt3</math> for some positive integer <math>n.</math> Find <math>n.</math>
  
==Solution 1(Coordinates and Bashy Algebra)==
+
==Solution 1==
 +
From the given condition, we could get <math>\angle{LAK}=60^{\circ}</math> and <math>\triangle{LCA}, \triangle{BAK}</math> are isosceles. Denote <math>\angle{BAK}=\alpha, \angle{CAL}=30^{\circ}-\alpha</math>. From the isosceles condition, we have <math>\angle{BKA}=180^{\circ}-2\alpha, \angle{CLA}=120^{\circ}+2\alpha</math>
  
By drawing our the triangle, I set A to be (0, 0) in the coordinate plane. I set C to be (x, 0) and B to be (0, y). I set K to be (a, b) and L to be (c, d). Then, since all of these distances are 14, I used coordinate geometry to set up the following equations:
+
Since <math>\angle{CAB}</math> is right, then <math>AB^2+AC^2=BC^2</math>, we could use law of cosines to express <math>AC^2, AB^2, AC^2+AB^2=2\cdot 14^2(2-\cos \angle{BKA}-\angle {CLA})=2\cdot 14^2(2+\cos(2\alpha)+\cos(60^{\circ}-2\alpha))=38^2</math>
<math>a^{2}</math> + <math>b^{2}</math> = 196; <math>a^{2}</math> + <math>(b - y)^{2}</math> = 196; <math>(a - c)^{2}</math> + <math>(b - d)^{2}</math> = 196; <math>c^{2}</math> + <math>d^{2}</math> = 196; <math>(c - x)^{2}</math> + <math>d^{2}</math>. = 196. Notice by merging the first two equations, the only possible way for it to work is if <math>b - y</math> = <math>-b</math> which means <math>y = 2b</math>. Next, since the triangle is right, and we know one leg is <math>2b</math> as <math>y = 2b</math>, the other leg, x, is <math>\sqrt{38^{2} - (2b)^{2}}</math>.Then, plugging these in, we get a system of equations with 4 variables and 4 equations and solving, we get a = 2, b = 8<math>\sqrt{3}</math>, c = 13, d = 3<math>\sqrt{3}</math>. Now plugging in all the points and using the Pythagorean Theorem, we get the coordinates of the quadrilateral. By Shoelace, our area is 104<math>\sqrt{3}</math>. Thus, the answer is <math>\boxed{104}</math>.
+
 
 +
Which simplifies to <math>\cos(2\alpha)+\cos(60^{\circ}-2\alpha)=\frac{165}{98}</math>, expand the expression by angle subtraction formula, we could get <math>\sqrt{3}\sin(2\alpha+60^{\circ})=\frac{165}{98}, \sin(2\alpha+60^{\circ})=\frac{55\sqrt{3}}{98}</math>
 +
 
 +
Conenct <math>CK</math> we could notice <math>\angle{CLK}=360^{\circ}-\angle{CLA}-\angle{ALK}=180^{\circ}-2\alpha=\angle{AKB}</math>, since <math>CL=LK=AK=KB</math> we have <math>\triangle{CLK}\cong \triangle{AKB}</math>. Moreover, since <math>K</math> lies on the perpendicular bisector of <math>AB</math>, the distance from <math>K</math> to <math>AC</math> is half of the length of <math>AB</math>, which means <math>[ACK]=\frac{[ABC]}{2}</math>, and we could have <math>[ACK]=[ACL]+[ALK]+[ABK]=[ABC]-[BKLC]</math>, so <math>[BKLC]=[AKC]</math>. We have <math>[AKC]=[ALK]+\frac{14^2}{2}(\sin(60-2\alpha)+\sin 2\alpha)=98(\sin(60+2\alpha))+[ALK]=55\sqrt{3}+\frac{\sqrt{3}}{4}14^2=104\sqrt{3}</math>, so our answer is <math>\boxed{104}</math>
  
~ilikemath247365
+
~ Bluesoul
  
 
==Solution 2==
 
==Solution 2==
Line 15: Line 20:
 
label("A",A,SW); label("B",B,NW); label("C",C,SE); label("A'",D,NE); label("K",K,W); label("L",L,NW); label("L'",G,SE); label("K'",F,E); label("O",O,NNW);
 
label("A",A,SW); label("B",B,NW); label("C",C,SE); label("A'",D,NE); label("K",K,W); label("L",L,NW); label("L'",G,SE); label("K'",F,E); label("O",O,NNW);
 
</asy>
 
</asy>
Let <math>O</math> be the midpoint of <math>BC</math>. Take the diagram and rotate it <math>180^{\circ}</math> around <math>O</math> to get the diagram shown. Notice that we have <math>\angle ABC+\angle ACB=90^{\circ}</math>. Because <math>\triangle AKL</math> is equilateral, then <math>\angle KAL=60^{\circ}</math>, so <math>\angle BAK+\angle CAL=30^{\circ}</math>. Because of isosceles triangles <math>\triangle BAK</math> and <math>\triangle CAL</math>, we get that <math>\angle ABK+\angle ACL=30^{\circ}</math> too, implying that <math>\angle KBC+\angle LCB=60^{\circ}</math>. But by our rotation, we have <math>\angle LCO=\angle L'BO</math>, so this implies that <math>\angle KBL'=60^{\circ}</math>, or that <math>\triangle KBL'</math> is equilateral. We can similarly derive that <math>\angle KBO=\angle K'CO</math> implies <math>\angle LCK'=60^{\circ}</math> so that <math>\triangle LK'O</math> is also equilateral. At this point, notice that quadrilateral <math>KL'K'L</math> is a rhombus. The area of our desired region is now <math>[BKLC]=\frac{1}{2}[BL'K'CLK]</math>. We can easily find the areas of <math>\triangle KBL'</math> and <math>\triangle LK'C</math> to be <math>\frac{\sqrt{3}}{4}\cdot 14^2=49\sqrt{3}</math>. Now it remains to find the area of rhombus <math>KL'K'L</math>.
+
Let <math>O</math> be the midpoint of <math>BC</math>. Take the diagram and rotate it <math>180^{\circ}</math> around <math>O</math> to get the diagram shown. Notice that we have <math>\angle ABC+\angle ACB=90^{\circ}</math>. Because <math>\triangle AKL</math> is equilateral, then <math>\angle KAL=60^{\circ}</math>, so <math>\angle BAK+\angle CAL=30^{\circ}</math>. Because of isosceles triangles <math>\triangle BAK</math> and <math>\triangle CAL</math>, we get that <math>\angle ABK+\angle ACL=30^{\circ}</math> too, implying that <math>\angle KBC+\angle LCB=60^{\circ}</math>. But by our rotation, we have <math>\angle LCO=\angle L'BO</math>, so this implies that <math>\angle KBL'=60^{\circ}</math>, or that <math>\triangle KBL'</math> is equilateral. We can similarly derive that <math>\angle KBO=\angle K'CO</math> implies <math>\angle LCK'=60^{\circ}</math> so that <math>\triangle LK'C</math> is also equilateral. At this point, notice that quadrilateral <math>KL'K'L</math> is a rhombus. The area of our desired region is now <math>[BKLC]=\frac{1}{2}[BL'K'CLK]</math>. We can easily find the areas of <math>\triangle KBL'</math> and <math>\triangle LK'C</math> to be <math>\frac{\sqrt{3}}{4}\cdot 14^2=49\sqrt{3}</math>. Now it remains to find the area of rhombus <math>KL'K'L</math>.
 
<asy>
 
<asy>
 
import math; import geometry; import olympiad;
 
import math; import geometry; import olympiad;
Line 28: Line 33:
 
~ethanzhang1001
 
~ethanzhang1001
  
==Solution 3==
+
==Solution 3 (coordinates and bashy algebra)==
 +
 
 +
By drawing out the triangle, I set <math>A</math> to be <math>(0, 0)</math> in the coordinate plane. I set <math>C</math> to be <math>(x, 0)</math> and B to be <math>(0, y)</math>. I set <math>K</math> to be <math>(a, b)</math> and <math>L</math> to be <math>(c, d)</math>. Then, since all of these distances are <math>14</math>, I used coordinate geometry to set up the following equations:
 +
<math>a^{2} + b^{2} = 196</math>; <math>a^{2} + (b - y)^{2} = 196</math>; <math>(a - c)^{2} + (b - d)^{2} = 196</math>; <math>c^{2} + d^{2} = 196</math>; <math>(c - x)^{2} + d^{2} = 196</math>. Notice by merging the first two equations, the only possible way for it to work is if <math>b - y = -b</math> which means <math>y = 2b</math>. Next, since the triangle is right, and we know one leg is <math>2b</math> as <math>y = 2b</math>, the other leg, <math>x</math>, is <math>\sqrt{38^{2} - (2b)^{2}}</math>.
 +
We now have:
 +
 +
<math>a^{2} + b^{2} = 196  \hspace{1 cm} \textbf{(1)}</math>
 +
 
 +
<math>(a - c)^{2} + (b - d)^{2} = 196 \hspace{1 cm} \textbf{(2)}</math>
  
From the given condition, we could get <math>\angle{LAK}=60^{\circ}</math> and <math>\triangle{LCA}, \triangle{BAK}</math> are isosceles. Denote <math>\angle{BAK}=\alpha, \angle{CAL}=30^{\circ}-\alpha</math>. From the isosceles condition, we have <math>\angle{BKA}=180^{\circ}-2\alpha, \angle{CLA}=120^{\circ}-2\alpha</math>
+
<math>c^{2} + d^{2} = 196  \hspace{1 cm} \textbf{(3)}</math>
  
Since <math>\angle{CAB}</math> is right, then <math>AB^2+AC^2=BC^2</math>, we could use law of cosines to express <math>AC^2, AB^2, AC^2+AB^2=2\cdot 14^2(2-\cos \angle{BKA}-\angle {CLA})=2\cdot 14^2(2+\cos(2\alpha)+\cos(60^{\circ}-2\alpha))=38^2</math>
+
<math>(c - \sqrt{38^{2} - (2b)^{2}})^{2} + d^{2} = 196  \hspace{1 cm} \textbf{(4)}</math>
  
Which simplifies to <math>\cos(2\alpha)+\cos(60^{\circ}-2\alpha)=\frac{165}{98}</math>, expand the expression by angle subtraction formula, we could get <math>\sqrt{3}\sin(2\alpha+60^{\circ})=\frac{165}{98}, \sin(2\alpha+60^{\circ})=\frac{55\sqrt{3}}{98}</math>
+
Expanding equation (4) and simplifying, we end with <math>38^{2} - 4b^{2} = 2c \cdot \sqrt{38^{2} - 4b^{2}}</math>. Next, squaring both sides and canceling terms, we have <math>4 \cdot 19^{2} - 4b^{2} = 4c^{2}</math> which tells us that <math>c^{2} = 19^{2} - b^{2}</math>. Now, plugging this value in into equation (3) tells us that <math>d^{2} = 196 - 19^{2} + b^{2}</math>. We expand equation (2) to get <math>a^{2} - 2ac + c^{2} + b^{2} - 2bd + d^{2} = 196</math>. Using equation (1), we can cancel terms and shift things over to get <math>196 = 2ac + 2bd</math> which means <math>98 = ac + bd</math>. From equation (1), we have <math>a^{2} = 196 - b^{2}</math>. Now, plugging in all of our variables in terms of <math>b</math> to this new equation, we have <math>98 = \sqrt{(361 - b^{2})(196 - b^{2}} + b\sqrt{b^{2} - 165}</math>. We now move things over to get <math>98 - b\sqrt{b^{2} - 165} = \sqrt{(361 - b^{2})(196 - b^{2}}</math>. Squaring both sides and canceling, we have <math>98^{2} - 196b\sqrt{b^{2} - 165} = (361)(196) - 392b^{2}</math>. We can now divide both sides by <math>196</math> to get <math>49 - b\sqrt{b^{2} - 165} = 361 - 2b^{2}</math>. Rearranging and simplifying, we now have <math>2b^{2} - 312 = b\sqrt{b^{2} - 165}</math>. Squaring both sides and combining like terms, we have <math>3b^{4} - 1083b^{2} + 312^{2} = 0</math>. This part will be a bit of a bash. Quadratic Formula tells us that <math>b^{2} = \frac{1083 \pm \sqrt{1083^{2} - 12 \cdot 312^{2}}}{6}</math>. The discriminant nicely simplifies to <math>\sqrt{4761} = 69</math>(this will be an extremely long bash but it's worth it). In fact, after computing, we end up with <math>b^{2} = 192, 169</math>. This leads us to solutions of <math>b = 8\sqrt{3}, 13</math>. If we choose <math>b = 8\sqrt{3}</math>, then <math>c^{2} = 361 - b^{2} = 361 - 192 = 169</math> which tells us that <math>c = 13</math>.(In fact if you choose <math>b = 13</math>, then <math>c = 8\sqrt{3}</math> so it's symmetrical and doesn't matter which one you choose). Next, <math>a^{2} = 196 - b^{2} = 196 - 192 = 4</math> which tells us that <math>a = 2</math>. Finally, <math>d^{2} = 196 - c^{2} = 196 - 169 = 27</math> which tells us that <math>d = 3\sqrt{3}</math>. Therefore, after all the bashing, our solution quadruple is <math>a = 2, b = 8\sqrt{3}, c = 13, d = 3\sqrt{3}</math>. Now plugging in all the points and using the Pythagorean Theorem, we get the coordinates of the quadrilateral which are <math>(0, 16\sqrt{3}), (2, 8\sqrt{3}), (13, 3\sqrt{3})</math>, and <math>(26, 0)</math>. By Shoelace, our area is <math>104\sqrt{3}</math>. Thus, the answer is <math>\boxed{104}</math>.
  
Conenct <math>CK</math> we could notice <math>\angle{CLA}=360^{\circ}-\angle{CLA}-\angle{ALK}=180^{\circ}-2\alpha=\angle{AKB}</math>, since <math>CL=LK=AK=KB</math> we have <math>\triangle{CLK}\cong \triangle{AKB}</math>. Moreover, since <math>K</math> lies on the perpendicular bisector of <math>AB</math>, the distance from <math>K</math> to <math>AC</math> is half of the length of <math>AB</math>, which means <math>[ACK]=\frac{[ABC]}{2}</math>, and we could have <math>[ACK]=[ACL]+[ALK]+[ABK]=[ABC]-[BKLC]</math>, so <math>[BKLC]=[AKC]</math>. We have <math>[AKC]=[ALK]+\frac{14^2}{2}(\sin(60-2\alpha)+\sin \alpha)=98(\sin(60+2\alpha))+[ALK]=55\sqrt{3}+\frac{\sqrt{3}}{4}14^2=104\sqrt{3}</math>, so our answer is <math>\boxed{104}</math>
 
  
~Bluesoul
+
~ilikemath247365
  
 
==Solution 4 (Trigonometry)==
 
==Solution 4 (Trigonometry)==
Line 52: Line 64:
 
Immediately we should see that <math>\triangle{AKL}</math> is equilateral, so <math>\angle{KAL}=60</math>.
 
Immediately we should see that <math>\triangle{AKL}</math> is equilateral, so <math>\angle{KAL}=60</math>.
  
We assume <math>\angle{LCA}=x</math>, and it is easily derived that <math>\angle{KBA}=30-x</math>. Using trigonometry, we can say that <math>AC=28\cos{x}</math> and <math>AB=28\cos{30-x}</math>. Pythagoras tells us that <math>BC^2=AC^2+AB^2</math> so now we evaluate as follows:
+
We assume <math>\angle{LCA}=x</math>, and it is easily derived that <math>\angle{KBA}=30-x</math>. Using trigonometry, we can say that <math>AC=28\cos{x}</math> and <math>AB=28\cos{(30-x)}</math>. Pythagoras tells us that <math>BC^2=AC^2+AB^2</math> so now we evaluate as follows:
 
\begin{align*}
 
\begin{align*}
 
38^2 &=28^2(\cos^2{x}+\cos^2{(30-x)}) \
 
38^2 &=28^2(\cos^2{x}+\cos^2{(30-x)}) \
Line 91: Line 103:
 
We see that <math>n=\boxed{104}</math>.
 
We see that <math>n=\boxed{104}</math>.
  
-lisztepos
+
~ [[User:lisztepos|lisztepos]]
 +
 
 +
~ Edited by [[User:Aoum|Aoum]]
 +
 
 +
==Solution 5 (Circles and Trigonometry)==
 +
[[File:AIME2025II_P14_Solution5.PNG|450px]]
 +
 
 +
Since <math>KB=KL=KA=14</math> and <math>LK=LA=LC=14</math>, we can construct 2 circles of radus 14 with <math>K</math> and <math>L</math> as the center of the two circles. Let the intersection of the 2 circles other than <math>A</math> be point <math>M</math>. Connect <math>BM</math>, <math>CM</math>, <math>KM</math>, and <math>LM</math>. Connect <math>AM</math>, which is the radical axis of the 2 circles.
 +
 
 +
From the figure, we know that
 +
<cmath>[KLCB] = [KLCMB] - [BMC]</cmath>
 +
<cmath>[KLCB] = [BKM] + [CLM] + [KLM] - [BMC]</cmath>
 +
 
 +
Let <math>\angle{BAM} = \theta</math>, which means that <math>\angle{CAM} = \frac{\pi}{2} - \theta</math>. For easier calculation, we temporarily define the radius of the 2 circles (which is 14) to be <math>R</math>. <math>\angle{BAM}</math> is an inscribed angle and <math>\angle{BKM}</math> is a central angle, so <math>\angle{BKM} = 2\angle{BAM} = 2\theta</math>. Similar with the other side, <math>\angle{CLM} = \pi-2\theta</math>. <math>KM = KL = LM = R</math>, so <math>\triangle{BKM}</math> is an equilateral triangle.
 +
 
 +
Using the Law of Cosines, we get the area of each little triangle.
 +
<cmath>[BKM] = \frac{1}{2}\cdot R^2\cdot\sin(2\theta)</cmath>
 +
<cmath>[CLM] = \frac{1}{2}\cdot R^2\cdot\sin(\pi-2\theta) = \frac{1}{2}\cdot R^2\cdot\sin(2\theta)</cmath>
 +
<cmath>[KLM] = \frac{1}{2}\cdot\sin({\frac{\pi}{3}})=\frac{\sqrt3}{4}R^2</cmath>
 +
\begin{align*}
 +
[BMC] & = \frac{1}{2}\cdot|BM|\cdot|MC|\cdot\sin({\frac{5\pi}{6}})\
 +
&= \frac{1}{2}\cdot\frac{1}{2}\cdot2R\sin(\theta)\cdot2R\sin(\frac{\pi}{2}-\theta)\
 +
&= R^2\cdot\sin(\theta)\cos(\theta)\
 +
&= \frac{1}{2}\cdot R^2\sin(2\theta)\
 +
\end{align*}
 +
 
 +
We can conclude that
 +
<cmath>[KLCB] = \frac{1}{2}\cdot R^2\cdot\sin(2\theta)+\frac{1}{2}\cdot R^2\cdot\sin(2\theta)+\frac{\sqrt3}{4}R^2-\frac{1}{2}\cdot R^2\sin(2\theta)</cmath>
 +
<cmath>[KLCB] = {14}^2\cdot(\frac{\sin(2\theta)}{2}+\frac{\sqrt3}{4})</cmath>
 +
 
 +
Now, we just needed to find the value of <math>\sin(2\theta)</math>. We analyze the <math>\triangle{BMC}</math>. We already know that <math>\angle{BMC} = {150}^{\circ}</math> and <math>BM = 2R\sin(\theta)</math> and <math>BM = 2R\cos(\theta)</math>. Using the Laws of Cosines (again!) and the given condition of <math>BC = 38</math>, we can create a formula on <math>\theta</math>.
 +
 
 +
<cmath>{BC}^2 = {BM}^2+{CM}^2-2\cdot BM\cdot MC\cdot\cos(\angle{BMC})</cmath>
 +
<cmath>{BC}^2 = (2R\sin(\theta))^2+(2R\cos(\theta))^2-2\cdot\cos({150}^{\circ})\cdot(2R\cos(\theta))\cdot(2R\cos(\theta)) = {38}^2</cmath>
 +
<cmath>4R^2(\sin^2(\theta)+\cos^2(\theta)+\sqrt3\sin(\theta)\cos(\theta)) = {38}^2</cmath>
 +
<cmath>4R^2(1+\frac{\sqrt3}{2}\cdot\sin(2\theta)) = {38}^2</cmath>
 +
<cmath>4R^2+\frac{4R^2\sqrt3}{2}\cdot\sin(2\theta)) = {38}^2</cmath>
 +
<cmath>\sin(2\theta) = \frac{2}{\sqrt3}\cdot(\frac{{38}^2}{4\cdot{38}^2}-1)</cmath>
 +
<cmath>\sin(2\theta) = \frac{2\cdot165}{\sqrt3\cdot{14}^2} = \frac{165}{98\sqrt3}</cmath>
 +
 
 +
We put the calculated value of <math>\sin(2\theta)</math> back into <math>[KLCB]</math>:
 +
<cmath>[KLCB] = {14}^2\cdot(\frac{165}{2\cdot98\sqrt3}+\frac{\sqrt3}{4})</cmath>
 +
<cmath>[KLCB] = 55\sqrt3+49\sqrt3 = 104\sqrt3</cmath>
 +
 
 +
Therefore,<math>n=\boxed{104}</math>.
 +
 
 +
~cassphe
 +
 
 +
==Solution 6 (Trig Identities; warning: bashy)==
 +
 
 +
Consider a diagram to the original problem (credit to solution 4):
 +
 
 +
<asy>
 +
import math; import geometry; import olympiad;
 +
point A,B,C,L,K; A=(0,0); C=(16sqrt(3),0); B=(0,26); L=(8sqrt(3),2); K=(3sqrt(3),13);
 +
draw(A--B--C--cycle); draw(A--K--L--cycle); draw(B--K); draw(C--L); draw(B--L);
 +
label("A",A,SW); label("B",B,NW); label("C",C,SE); label("K",K,W); label("L",L,NE);
 +
markscalefactor=1;
 +
</asy>
 +
 
 +
Now, let us simplify the problem further. We know that <math>K</math> and <math>L</math> must lie on the perpendicular bisectors of <math>AB</math> and <math>AC</math>, respectively. The real problem here is the equilateral triangle in the middle, inscribed in a rectangle with diagonal length 19.
 +
 
 +
We create a further simplified problem: given that the inscribed equilateral triangle of a certain rectangle with diagonal length <math>19</math> has side length <math>14</math>, find the sides and intersection points on this rectangle. For reference, here is a diagram:
 +
 
 +
<asy>
 +
import math; import geometry; import olympiad;
 +
point A,B,C,D,L,K; A=(0,0); D=(13,0); B=(0,8sqrt(3)); C=(13,8sqrt(3)); L=(13,3sqrt(3)); K=(2,8sqrt(3));
 +
draw(A--B--C--D--cycle); draw(A--K--L--cycle);
 +
label("A",A,SW); label("B",B,NW); label("C",C,NE); label("K",K,N); label("L",L,E); label("D",D,SE);
 +
markscalefactor=1;
 +
</asy>
 +
 
 +
 
 +
 
 +
Note the angles <math>\angle{LAD}</math> and <math>\angle{BAK}</math>. Since <math>\angle{LAD} + \angle{BAK} + 60^{\circ} = 90^{\circ}</math>, <math>\angle{LAD} + \angle{BAK} = 30^{\circ}</math>, and <math>\angle{BAK} = 30^{\circ} - \angle{LAD}</math>. Thus, let <math>\angle{LAD} = \alpha</math> and <math>\angle{BAK} = 30 - \alpha</math>.
 +
 
 +
Now, we know that <math>AB^2 + AD^2 = 19^2</math>, as the hypotenuse of the larger right triangle is <math>38</math>. However, we can also express AB and AB in terms of <math>\alpha</math>: <math>AB = 14(\cos(30^{\circ}-\alpha))</math> and <math>AD = 14(\cos(\alpha))</math>. Thus, <math>\cos^2(\alpha) + \cos^2(30^{\circ}-\alpha) = 361/196</math>. We expand this using the cosine difference identity:
 +
 
 +
<math>\cos^2(\alpha) + (\cos(30^{\circ})\cos(\alpha) + \sin(30^{\circ})\sin(\alpha))^2 = \frac{361}{196}</math>
 +
 
 +
<math>\frac{7}{4}\cos^2(\alpha) + \frac{1}{4}\sin^2(\alpha) + \frac{\sqrt3}{2}\sin(\alpha)\cos(\alpha) = \frac{361}{196}</math>
 +
 
 +
Using the fact that <math>\sin^2(\alpha) + \cos^2(\alpha) = 1</math>, then multiplying the entire equation by <math>2</math>,
 +
 
 +
<math>3\cos^2(\alpha) + \sqrt3\sin(\alpha)\cos(\alpha) = \frac{156}{49}</math>
 +
 
 +
Now, to save some writing, let us denote <math>\sin(\alpha)</math> with <math>x</math>, and <math>\cos(\alpha)</math> with <math>y</math>.
 +
 
 +
We have the following equations:
 +
 
 +
<math>x^2 + y^2 = 1</math>
 +
 
 +
<math>3y^2 + \sqrt3xy = \frac{156}{49}</math>
 +
 
 +
Substituting <math>x</math> for <math>y</math>, moving <math>3y^2</math> to the left side, squaring, and dividing by 9, we end up with the quartic:
 +
 
 +
<math>\frac{4}{3}y^4 - \frac{361}{147}y^2 + \frac{52^2}{49^2} = 0</math>
 +
 
 +
Using the quadratic formula, we end up with this:
 +
 
 +
<math>y^2 = \frac{\frac{361}{49} \pm \frac{1}{49}\cdot\sqrt{361^2 - 208^2\cdot3}}{8}</math>
 +
 
 +
Now, we could just compute <math>361^2 - 208^2\cdot3</math>, but instead, we can do this:
 +
 
 +
<math>361^2 - 208^2\cdot3 = (129600 + 720 + 1) - (40000 + 3200 + 64)\cdot3</math>
 +
 
 +
<math>(129600 + 721) - (43200 + 64)\cdot3</math>
 +
 
 +
<math>(129600 + 721) - (129600 + 192) = 529 = 23^2</math>
 +
 
 +
Thus, we have two cases:
 +
 
 +
<math>1. \cos(\alpha) = \frac{13}{14}</math>
 +
 
 +
<math>2. \cos(\alpha) = \frac{4\sqrt3}{7}</math>
 +
 
 +
Both lead to the same side lengths of the rectangle: <math>8\sqrt3</math>, and <math>13</math>. Referring back to our original rectangle diagram and plugging in our trigonometric values, we get that <math>CK = 13 - 2 = 11</math>, and <math>CL = 8\sqrt3 - 3\sqrt3 = 5\sqrt3</math>. Thus, the area of the original quadrilateral is <math>\frac{88\sqrt3 + 55\sqrt3 + 65\sqrt3}{2}</math>, or <math>\boxed{104}\sqrt3</math>.
 +
 
 +
~Stead
 +
 
 +
==Solution 7 (analytic geometry with roots of unity)==
 +
 
 +
<asy>
 +
import math; import geometry; import olympiad;
 +
point A,B,C,L,K; A=(0,0); C=(16sqrt(3),0); B=(0,26); L=(8sqrt(3),2); K=(3sqrt(3),13);
 +
point M,N; M=(8sqrt(3), 0); N=(0,13);
 +
draw(A--B--C--cycle); draw(A--K--L--cycle); draw(B--K); draw(C--L);
 +
draw(N--K); draw(L--M);
 +
label("A",A,SW); label("B",B,NW); label("C",C,SE); label("K",K,ENE); label("L",L,NE);
 +
label(“N”,N,W); label(“M”,M,S);
 +
point am, ml, an, nk, mc, bn;
 +
am=(4sqrt(3), 0); mc=(12sqrt(3),0); ml=(8sqrt(3),1); an=(0,6.5); bn=(0,19.5);
 +
nk=(2.5981, 13);
 +
label(“a",am,S); label(“a",mc,S); label(“y”,ml,ESE);
 +
label(“b”,an,W); label(“b”,bn,W); label(“x”,nk,S);
 +
markscalefactor=1;
 +
</asy>
 +
This diagram is modified from the solution 4 diagram. Let <math>M</math> be the midpoint of <math>AC</math>, and let <math>N</math> be the midpoint of <math>AB</math>.
 +
 
 +
We place the diagram onto the Cartesian coordinate grid. Let <math>A = (0, 0)</math>, <math>M = (a, 0)</math>, <math>C = (2a, 0)</math>, <math>N = (0, b)</math>, and <math>B = (0, 2b)</math>. We are given <math>AL = CL</math>, so <math>\triangle ACL</math> is isosceles. Therefore, <math>LM</math> is the perpendicular bisector of <math>AC</math>, so we can let <math>L = (a, y)</math>. Similarly, we’re given <math>AK = BK</math>, so <math>\triangle ABK</math> is also isosceles, and <math>NK</math> is the perpendicular bisector of <math>AB</math>. Therefore, we can let <math>K = (x, b)</math>.
 +
 
 +
We have <math>AB = 2b</math> and <math>AC = 2a</math>. We’re given that <math>\angle BAC = 90^\circ</math> and <math>BC = 38</math>, so by the Pythagorean theorem, <cmath>(2a)^2 + (2b)^2 = 38^2 \implies 4a^2 + 4b^2 = 1444 \implies a^2 + b^2 = 361.</cmath>
 +
 
 +
We now place the diagram onto the complex plane. We use the x-axis of the coordinate plane as the complex plane’s real axis, and we use the y-axis of the coordinate plane as the complex plane’s imaginary axis. So, on the complex plane, <math>A = 0</math>, <math>L = a + yi</math>, and <math>K = x + bi</math>. Also, since we are given <math>AK = KL = AL</math>, <math>\triangle AKL</math> is equilateral. In addition, since <math>AL = AK</math>, <math>\angle KAL = 60^\circ</math>, and because we constructed our diagram with <math>K</math> counterclockwise of <math>L</math> (if it were the other way around, we could go through the same steps as this solution, but with variables switched around), <math>K</math> is a <math>60^\circ</math> counterclockwise rotation of <math>L</math> about <math>A</math>, and <math>L</math> is a <math>60^\circ</math> clockwise or <math>300^\circ</math> counterclockwise rotation of <math>K</math> about <math>A</math>.
 +
 
 +
Rotation on the complex plane is equivalent to multiplying by a root of unity. Here, <math>K</math> and <math>L</math> are rotated a multiple of <math>60^\circ</math> to each other about <math>A</math>. <math>60^\circ</math> is one-sixth of a full circle, so to go from <math>L</math> to <math>K</math> or <math>K</math> to <math>L</math>, we multiply by a 6th root of unity. Specifically, to go from <math>L</math> to <math>K</math>, we multiply by <math>\dfrac{1}{2} + \dfrac{\sqrt{3}}{2}i</math>, and to go from <math>K</math> to <math>L</math>, we multiply by <math>\dfrac{1}{2} - \dfrac{\sqrt{3}}{2}i</math>.
 +
 
 +
We multiply the coordinate of <math>L</math> by <math>\dfrac{1}{2} + \dfrac{\sqrt{3}}{2}i</math> on the complex plane to obtain equations for the coordinates of <math>K</math>: <cmath>(a + yi)\left(\dfrac{1}{2} + \dfrac{\sqrt{3}}{2}i\right) = \left(\dfrac{a}{2} - \dfrac{\sqrt{3}}{2}y\right) + \left(\dfrac{y}{2} + \dfrac{\sqrt{3}}{2}a\right)i = x + bi.</cmath> Equating real and imaginary parts, we obtain <cmath>x = \dfrac{a}{2} - \dfrac{\sqrt{3}}{2}y \text{ and } b = \dfrac{y}{2} + \dfrac{\sqrt{3}}{2}a.</cmath>
 +
 
 +
Similarly, we multiply the coordinate of <math>K</math> by <math>\dfrac{1}{2} - \dfrac{\sqrt{3}}{2}i</math> to obtain equations for the coordinates of <math>L</math>: <cmath>(x + bi)\left(\dfrac{1}{2} - \dfrac{\sqrt{3}}{2}i\right) = \left(\dfrac{x}{2} + \dfrac{\sqrt{3}}{2}b\right) + \left(\dfrac{b}{2} - \dfrac{\sqrt{3}}{2}x\right) = a + yi.</cmath> Equating real and imaginary parts, we obtain <cmath>a = \dfrac{x}{2} + \dfrac{\sqrt{3}}{2}b \text{ and } y = \dfrac{b}{2} - \dfrac{\sqrt{3}}{2}x.</cmath>
 +
 
 +
We now look back at the problem to see what it asks for: <math>[BKLC]</math>. Looking at the diagram, we see we can express the area of the quadrilateral as the area of the big right triangle <math>ABC</math> minus the two isosceles triangles <math>ABK</math> and <math>ALC</math> minus the equilateral triangle <math>AKL</math>: <cmath>[BKLC] = [ABC] - [ABK] - [ACL] - [AKL].</cmath>
 +
 
 +
We are given that <math>AK = KL = AL = 14</math>, so the area of equilateral triangle <math>AKL</math> is <math>\dfrac{\sqrt{3}}{4} \cdot 14^2 = 49\sqrt{3}</math>. Also, we can use <math>AC = 2a</math> as the base of <math>\triangle ABC</math> and <math>AB = 2b</math> as the height, so <math>[ABC] = \dfrac{(2a)(2b)}{2} = 2ab</math>. Similarly, we use <math>AC = 2a</math> as the base of <math>\triangle ACL</math> and <math>ML = y</math> (<math>M = (a, 0)</math> and <math>L = (a, y)</math>, so the distance between the two is equal to <math>y</math>) as the height, so <math>[ACL] = \dfrac{(2a)(y)}{2} = ay</math>. Finally, we use <math>AB = 2b</math> and <math>KN = x</math> (<math>N = (0, b)</math> and <math>K = (x, b)</math>, so the distance between the two is equal to <math>x</math>) as the base and height of <math>\triangle ABK</math> respectively, so <math>[ABK] = \dfrac{(2b)(x)}{2} = bx</math>. Therefore, <cmath>[BKLC] = [ABC] - [ABK] - [ACL] - [AKL] = 2ab - bx - ay - 49\sqrt{3}.</cmath>
 +
 
 +
We have already shown that <math>b = \dfrac{y}{2} + \dfrac{\sqrt{3}}{2}a</math>. Substituting this into <math>a^2 + b^2 = 361</math>, we have <cmath>a^2 + \left(\dfrac{y}{2} + \dfrac{\sqrt{3}}{2}a\right)^2 = 361.</cmath> Expanding this out, we have <cmath>a^2 + \dfrac{y^2}{4} + \dfrac{\sqrt{3}}{2}ay + \dfrac{3}{4}a^2 = 361.</cmath> Multiplying both sides by <math>4</math> and rearranging the left side, we have <cmath>7a^2 + y^2 + 2ay\sqrt{3} = 1444.</cmath> We previously showed that <math>AC \perp ML</math>, so <math>AM \perp ML</math> (since <math>M</math> is on <math>AC</math>). Therefore, <math>\triangle AML</math> has a right angle at <math>M</math>. By the Pythagorean theorem, <math>AM^2 + ML^2 = a^2 + y^2 = AL^2 = 196</math>. Subtracting <math>a^2 + y^2</math> from the left side and <math>196</math> from the right side, we obtain <cmath>6a^2 + 2ay\sqrt{3} = 1248.</cmath> Dividing both sides of the equation by <math>2\sqrt{3}</math> and factoring <math>a</math> out of the left side, we have <cmath>a(a\sqrt{3} + y) = 208\sqrt{3}.</cmath> However, we have <math>b = \dfrac{y}{2} + \dfrac{\sqrt{3}}{2}a</math>, so the expression inside the parentheses is simply <math>2b</math>! Therefore, <cmath>2ab = 208\sqrt{3}.</cmath>
 +
 
 +
The algebra’s not over yet. We also showed that <math>a = \dfrac{x}{2} + \dfrac{\sqrt{3}}{2}b</math>, so substituting that into <math>a^2 + b^2 + 361</math>, we obtain <cmath>b^2 + \left(\dfrac{x}{2} + \dfrac{\sqrt{3}}{2}b\right)^2 = 361.</cmath> Expanding this out, we have <cmath>b^2 + \dfrac{x^2}{4} + \dfrac{\sqrt{3}}{2}bx + \dfrac{3}{4}b^2 = 361.</cmath> Multiplying both sides by <math>4</math> and rearranging the left side, we now have <cmath>7b^2 + x^2 + 2xb\sqrt{3} = 1444.</cmath> Does this equation look familiar? We previously showed that <math>NK \perp AB</math>. Therefore, <math>NK \perp AN</math> (since <math>N</math> is on <math>AB</math>). So, <math>\triangle ANK</math> has a right angle at <math>N</math>. By the Pythagorean theorem, <math>AN^2 + KN^2 = b^2 + x^2 = AK^2 = 196</math>. Subtracting <math>b^2 + x^2</math> from the left side and <math>196</math> from the right side, we have <cmath>6b^2 + 2xb\sqrt{3} = 1248.</cmath> We previously also had the equation <math>6a^2 + 2ay\sqrt{3} = 1248</math>, and adding this equation to the above equation and factoring out <math>2\sqrt{3}</math>, we have <cmath>6a^2 + 6b^2 + 2\sqrt{3}(bx + ay) = 2496.</cmath> We previously showed <math>a^2 + b^2 = 361</math>, so <math>6a^2 + 6b^2 = 6 \cdot 361 = 2166</math>. Subtracting <math>6a^2 + 6b^2</math> from the left side and <math>2166</math> from the right side, we obtain <math>2\sqrt{3}(bx + ay) = 330</math>. Finally, dividing both sides by <math>2\sqrt{3}</math>, we have <cmath>bx + ay = 55\sqrt{3}.</cmath>
 +
 
 +
We previously arrived at this expression for <math>[BKLC]</math>: <cmath>[BKLC] = 2ab - bx - ay - 49\sqrt{3}.</cmath> We now know <math>2ab = 208\sqrt{3}</math> and <math>bx + ay = 55\sqrt{3}</math>, so we can simply substitute them in. Therefore, <cmath>[BKLC] = 2ab - bx - ay - 49\sqrt{3} = 208\sqrt{3} - 55\sqrt{3} - 49\sqrt{3} = 104\sqrt{3}.</cmath> Finally, we are given <math>[BKLC] = n\sqrt{3}</math> for some integer <math>n</math>. We know <math>[BKLC] = 104\sqrt{3}</math>, so <math>n = \boxed{104}</math>.
 +
 
 +
Notice that <math>[BKLC] = 104\sqrt{3} = \dfrac{208\sqrt{3}}{2} = \dfrac{[ABC]}{2}</math>. Is this a coincidence?
 +
 
 +
~V0305
 +
==Solution 8==
 +
[[File:2025 AIME II 14 vvsss.png|270px|right]]
 +
<math>AK = BK = KL, \angle AKL = 60 ^\circ \implies \angle ABL = 30^\circ.</math>
 +
 
 +
Similarly, <math>\angle ACK = 30^\circ.</math>
 +
<cmath>\angle BAK = \angle ABK, \angle LBK + \angle ABK = 30^\circ.</cmath>
 +
<cmath>\angle CAL + \angle BAK = 90^\circ - \angle LAK = 30^\circ \implies</cmath>
 +
<cmath>\angle CAL = \angle LBK \implies \triangle KLB = \triangle LAC \implies</cmath>
 +
<math>AC = BL.</math> Similarly, <math>AB = CK.</math>
 +
 
 +
Denote the area of triangle <math>X</math> as <math>[X].</math>
 +
<cmath>2[ABL] = AB \cdot BL \cdot \sin 30^\circ = \frac{AB \cdot AC}{2} = [ABC].</cmath>
 +
Similarly, <math>[ABL] = [ACK] = \frac {[ABC]}{2}.</math>
 +
<cmath>[BKLC] = [ABC] - [ABL] - [ALC]+ [BLK] = [ABC] - [ABL] = [ABL].</cmath>
 +
By applying the Law of Cosines on <math>\triangle ABL,</math>  we get
 +
<math>AB^2 + BL^2 - 2 AB \cdot BL \cos 30^\circ = AL^2 \implies  AB^2 + AC^2 - AB \cdot AC \sqrt{3} = AL^2 \implies</math>
 +
<cmath>BC^2 - AL^2 = 4 [BKLC] \sqrt{3} \implies</cmath>
 +
<cmath>[BLKC] = \frac {38^2-14^2}{4 \sqrt{3}} = \frac{19^2-7^2}{3} \sqrt{3} = 4 \cdot 26 \sqrt{3} = 104 \sqrt{3}.</cmath>
 +
'''vladimir.shelomovskii@gmail.com, vvsss'''
 +
==Solution 9==
 +
 
 +
<math>\triangle KAL</math> is clearly equilateral, and <math>\triangle AKB</math> and <math>\triangle ALC</math> are clearly isosceles. Now, we can do a bit of angle chasing. Say <math>\angle AKB = 2\theta</math>. Then, since <math>\triangle AKB</math> is isosceles, <math>\angle ABK = 90 - \theta</math>. <math>\angle KAL = 60^\circ</math>, so <math>\angle LAC = \theta - 60</math>, so <math>\angle ALC = 300 - 2\theta</math>, so <math>\angle KLC = 2\theta</math>. Since the angles are congruent, <math>\triangle AKB</math> is congruent to <math>\triangle KLC</math>. As such, we can rotate it around the center of <math>\triangle KAL</math> onto side AL to produce <math>\triangle LAD</math>. Because all the triangles are congruent, connecting the congruent corners will all produce the same length. From BC, we see that this length is <math>38</math>, so <math>\triangle BCD</math> is equilateral with side length <math>38</math>. This triangle is comprised of 3 quadrilaterals and <math>\triangle KAL</math> in the center, and it's easy to see that each quadrilateral is congruent to <math>BKLC</math>. As such, <math>[BKLC] = \frac{[BCD]-[KAL]}{3} = \frac{361 \sqrt{3} - 49 \sqrt{3}}{3} = 104 \sqrt{3}</math>, giving an answer of <math>\boxed{104}</math>.
 +
 
 +
~noob1877
 +
 
 +
==Video Solution (Angle chasing and congruent triangles)==
 +
https://youtu.be/APaVy8OqJ04?si=MSBv1fS1ajjqcxN6
  
 
==Remarks==
 
==Remarks==

Latest revision as of 18:33, 8 July 2025

Problem

Let ${\triangle ABC}$ be a right triangle with $\angle A = 90^\circ$ and $BC = 38.$ There exist points $K$ and $L$ inside the triangle such\[AK = AL = BK = CL = KL = 14.\]The area of the quadrilateral $BKLC$ can be expressed as $n\sqrt3$ for some positive integer $n.$ Find $n.$

Solution 1

From the given condition, we could get $\angle{LAK}=60^{\circ}$ and $\triangle{LCA}, \triangle{BAK}$ are isosceles. Denote $\angle{BAK}=\alpha, \angle{CAL}=30^{\circ}-\alpha$. From the isosceles condition, we have $\angle{BKA}=180^{\circ}-2\alpha, \angle{CLA}=120^{\circ}+2\alpha$

Since $\angle{CAB}$ is right, then $AB^2+AC^2=BC^2$, we could use law of cosines to express $AC^2, AB^2, AC^2+AB^2=2\cdot 14^2(2-\cos \angle{BKA}-\angle {CLA})=2\cdot 14^2(2+\cos(2\alpha)+\cos(60^{\circ}-2\alpha))=38^2$

Which simplifies to $\cos(2\alpha)+\cos(60^{\circ}-2\alpha)=\frac{165}{98}$, expand the expression by angle subtraction formula, we could get $\sqrt{3}\sin(2\alpha+60^{\circ})=\frac{165}{98}, \sin(2\alpha+60^{\circ})=\frac{55\sqrt{3}}{98}$

Conenct $CK$ we could notice $\angle{CLK}=360^{\circ}-\angle{CLA}-\angle{ALK}=180^{\circ}-2\alpha=\angle{AKB}$, since $CL=LK=AK=KB$ we have $\triangle{CLK}\cong \triangle{AKB}$. Moreover, since $K$ lies on the perpendicular bisector of $AB$, the distance from $K$ to $AC$ is half of the length of $AB$, which means $[ACK]=\frac{[ABC]}{2}$, and we could have $[ACK]=[ACL]+[ALK]+[ABK]=[ABC]-[BKLC]$, so $[BKLC]=[AKC]$. We have $[AKC]=[ALK]+\frac{14^2}{2}(\sin(60-2\alpha)+\sin 2\alpha)=98(\sin(60+2\alpha))+[ALK]=55\sqrt{3}+\frac{\sqrt{3}}{4}14^2=104\sqrt{3}$, so our answer is $\boxed{104}$

~ Bluesoul

Solution 2

[asy] import math; import geometry; import olympiad; point A,C,B,L,K,D,F,G,O; A=(0,0); C=(16sqrt(3),0); B=(0,26); L=(8sqrt(3),2); K=(3sqrt(3),13); D=(16sqrt(3),26); F=(13sqrt(3),13); G=(8sqrt(3),24); O=(8sqrt(3),13); draw(A--B--D--C--A--L--C--F--L--K--A--D); draw(K--B--G--D--F--G--K--F); draw(B--O--L); draw(C--O--G); label("A",A,SW); label("B",B,NW); label("C",C,SE); label("A'",D,NE); label("K",K,W); label("L",L,NW); label("L'",G,SE); label("K'",F,E); label("O",O,NNW); [/asy] Let $O$ be the midpoint of $BC$. Take the diagram and rotate it $180^{\circ}$ around $O$ to get the diagram shown. Notice that we have $\angle ABC+\angle ACB=90^{\circ}$. Because $\triangle AKL$ is equilateral, then $\angle KAL=60^{\circ}$, so $\angle BAK+\angle CAL=30^{\circ}$. Because of isosceles triangles $\triangle BAK$ and $\triangle CAL$, we get that $\angle ABK+\angle ACL=30^{\circ}$ too, implying that $\angle KBC+\angle LCB=60^{\circ}$. But by our rotation, we have $\angle LCO=\angle L'BO$, so this implies that $\angle KBL'=60^{\circ}$, or that $\triangle KBL'$ is equilateral. We can similarly derive that $\angle KBO=\angle K'CO$ implies $\angle LCK'=60^{\circ}$ so that $\triangle LK'C$ is also equilateral. At this point, notice that quadrilateral $KL'K'L$ is a rhombus. The area of our desired region is now $[BKLC]=\frac{1}{2}[BL'K'CLK]$. We can easily find the areas of $\triangle KBL'$ and $\triangle LK'C$ to be $\frac{\sqrt{3}}{4}\cdot 14^2=49\sqrt{3}$. Now it remains to find the area of rhombus $KL'K'L$. [asy] import math; import geometry; import olympiad; point A,K,O,L,M; A=(-7sqrt(3),0); K=(0,7); O=(55sqrt(3)/14,23/14); L=(0,-7); M=(0,0);  draw(A--K--O--L--A--O--M--A); draw(K--L); label("A",A,W); label("K",K,N); label("O",O,E); label("L",L,S); label("M",M,SE); [/asy] Focus on the quadrilateral $AKOL$. Restate the configuration in another way - we have equilateral triangle $\triangle AKL$ with side length 14, and a point $O$ such that $AO=19$ and $\angle KOL=90^{\circ}$. We are trying to find the area of $\triangle KOL$. Let $M$ be the midpoint of $KL$. We see that $AM=7\sqrt{3}$, and since $M$ is the circumcenter of $\triangle KOL$, it follows that $MO=7$. Let $\angle KMO=\theta$. From the Law of Cosines in $\triangle AMO$, we can see that \[(7\sqrt{3})^2+7^2-2(7\sqrt{3})(7)\cos (\angle AMO)=361,\] so after simplification we get that $\cos (\theta +90)=-\frac{55\sqrt{3}}{98}$. Then by trigonometric identities this simplifies to $\sin \theta =\frac{55\sqrt{3}}{98}$. Applying the definition $\cos^2\theta +\sin^2\theta =1$ gives us that $\cos \theta =\frac{23}{98}$. Applying the Law of Cosines again in $\triangle KMO$, we get that \[49+49-2\cdot 7\cdot 7\cdot \cos \theta =98-98\cdot \frac{23}{98}=98-23=75=KO^2,\] which tells us that $KO=5\sqrt{3}$. The Pythagorean Theorem in $\triangle KOL$ gives that $OL=11$, so the area of $\triangle KOL$ is $\frac{55\sqrt{3}}{2}$. The rhombus $KL'K'L$ consists of four of these triangles, so its area is $4\cdot \frac{55\sqrt{3}}{2}=110\sqrt{3}$.

Finally, the area of hexagon $BL'K'CLK$ is $49\sqrt{3}+110\sqrt{3}+49\sqrt{3}=208\sqrt{3}$, and since this consists of quadrilaterals $BKLC$ and $CK'L'B$ which must be congruent by that rotation, the area of $BKLC$ is $104\sqrt{3}$. Therefore the answer is $\boxed{104}$.

~ethanzhang1001

Solution 3 (coordinates and bashy algebra)

By drawing out the triangle, I set $A$ to be $(0, 0)$ in the coordinate plane. I set $C$ to be $(x, 0)$ and B to be $(0, y)$. I set $K$ to be $(a, b)$ and $L$ to be $(c, d)$. Then, since all of these distances are $14$, I used coordinate geometry to set up the following equations: $a^{2} + b^{2} = 196$; $a^{2} + (b - y)^{2} = 196$; $(a - c)^{2} + (b - d)^{2} = 196$; $c^{2} + d^{2} = 196$; $(c - x)^{2} + d^{2} = 196$. Notice by merging the first two equations, the only possible way for it to work is if $b - y = -b$ which means $y = 2b$. Next, since the triangle is right, and we know one leg is $2b$ as $y = 2b$, the other leg, $x$, is $\sqrt{38^{2} - (2b)^{2}}$. We now have:

$a^{2} + b^{2} = 196  \hspace{1 cm} \textbf{(1)}$

$(a - c)^{2} + (b - d)^{2} = 196 \hspace{1 cm} \textbf{(2)}$

$c^{2} + d^{2} = 196  \hspace{1 cm} \textbf{(3)}$

$(c - \sqrt{38^{2} - (2b)^{2}})^{2} + d^{2} = 196  \hspace{1 cm} \textbf{(4)}$

Expanding equation (4) and simplifying, we end with $38^{2} - 4b^{2} = 2c \cdot \sqrt{38^{2} - 4b^{2}}$. Next, squaring both sides and canceling terms, we have $4 \cdot 19^{2} - 4b^{2} = 4c^{2}$ which tells us that $c^{2} = 19^{2} - b^{2}$. Now, plugging this value in into equation (3) tells us that $d^{2} = 196 - 19^{2} + b^{2}$. We expand equation (2) to get $a^{2} - 2ac + c^{2} + b^{2} - 2bd + d^{2} = 196$. Using equation (1), we can cancel terms and shift things over to get $196 = 2ac + 2bd$ which means $98 = ac + bd$. From equation (1), we have $a^{2} = 196 - b^{2}$. Now, plugging in all of our variables in terms of $b$ to this new equation, we have $98 = \sqrt{(361 - b^{2})(196 - b^{2}} + b\sqrt{b^{2} - 165}$. We now move things over to get $98 - b\sqrt{b^{2} - 165} = \sqrt{(361 - b^{2})(196 - b^{2}}$. Squaring both sides and canceling, we have $98^{2} - 196b\sqrt{b^{2} - 165} = (361)(196) - 392b^{2}$. We can now divide both sides by $196$ to get $49 - b\sqrt{b^{2} - 165} = 361 - 2b^{2}$. Rearranging and simplifying, we now have $2b^{2} - 312 = b\sqrt{b^{2} - 165}$. Squaring both sides and combining like terms, we have $3b^{4} - 1083b^{2} + 312^{2} = 0$. This part will be a bit of a bash. Quadratic Formula tells us that $b^{2} = \frac{1083 \pm \sqrt{1083^{2} - 12 \cdot 312^{2}}}{6}$. The discriminant nicely simplifies to $\sqrt{4761} = 69$(this will be an extremely long bash but it's worth it). In fact, after computing, we end up with $b^{2} = 192, 169$. This leads us to solutions of $b = 8\sqrt{3}, 13$. If we choose $b = 8\sqrt{3}$, then $c^{2} = 361 - b^{2} = 361 - 192 = 169$ which tells us that $c = 13$.(In fact if you choose $b = 13$, then $c = 8\sqrt{3}$ so it's symmetrical and doesn't matter which one you choose). Next, $a^{2} = 196 - b^{2} = 196 - 192 = 4$ which tells us that $a = 2$. Finally, $d^{2} = 196 - c^{2} = 196 - 169 = 27$ which tells us that $d = 3\sqrt{3}$. Therefore, after all the bashing, our solution quadruple is $a = 2, b = 8\sqrt{3}, c = 13, d = 3\sqrt{3}$. Now plugging in all the points and using the Pythagorean Theorem, we get the coordinates of the quadrilateral which are $(0, 16\sqrt{3}), (2, 8\sqrt{3}), (13, 3\sqrt{3})$, and $(26, 0)$. By Shoelace, our area is $104\sqrt{3}$. Thus, the answer is $\boxed{104}$.


~ilikemath247365

Solution 4 (Trigonometry)

[asy] import math; import geometry; import olympiad; point A,B,C,L,K; A=(0,0); C=(16sqrt(3),0); B=(0,26); L=(8sqrt(3),2); K=(3sqrt(3),13); draw(A--B--C--cycle); draw(A--K--L--cycle); draw(B--K); draw(C--L); draw(B--L); label("A",A,SW); label("B",B,NW); label("C",C,SE); label("K",K,W); label("L",L,NE); markscalefactor=1; draw(anglemark(L,C,A)); draw(anglemark(A,B,K)); [/asy] Immediately we should see that $\triangle{AKL}$ is equilateral, so $\angle{KAL}=60$.

We assume $\angle{LCA}=x$, and it is easily derived that $\angle{KBA}=30-x$. Using trigonometry, we can say that $AC=28\cos{x}$ and $AB=28\cos{(30-x)}$. Pythagoras tells us that $BC^2=AC^2+AB^2$ so now we evaluate as follows: 382=282(cos2x+cos2(30x))(1914)2=cos2x+(32cosx12sinx)2=cos2x+34cos2x32sinxcosx+14sin2x=32cos2x32sinxcosx+14=34(2cos2x1)34(2sinxcosx)+1(3314)(514)=32(32(cos2x)12(sin2x))55398=cos(302x)

It is obvious that $\angle{ALC}=180-2x$. We can easily derive $\cos{(150+(30-2x))}$ using angle addition we know, and then using cosine rule to find side $AC$.

55398=cos(302x)sin(302x)=1cos2(302x)=2398cos(1802x)=(32)(55398)(12)(2398)cos(1802x)=4749AC2=142+142+21414(4749)AC=768=163

We easily find $\cos{x}=\frac{4\sqrt{3}}{7}$ and $\sin{x}=\frac{1}{7}$ (draw a perpendicular down from $L$ to $AC$). What we are trying to find is the area of $BKLC$, which can be found by adding the areas of $\triangle{BKL}$ and $\triangle{BLC}$. It is trivial that $\triangle{BKL}$ and $\triangle{ACL}$ are congruent, so we know that $BL=28\cos{x}$. What we require is

12(14)(14)(sin(1802x))+12(14)(28cosx)(sin(120+x))

We do similar calculations to obtain that $\sin{(120+x)}=\frac{11}{14}$ and $\cos{(180-2x)}=-\frac{47}{49}$ implies $\sin{(180-2x)}=\frac{8\sqrt{3}}{49}$, so now we plug in everything we know to calculate the area of the quadrilateral:

12(14)(14)(sin(1802x))+12(14)(28cosx)(sin(120+x))=12(14)(14)(8349)+12(14)(163)(1114)=163+883=1043

We see that $n=\boxed{104}$.

~ lisztepos

~ Edited by Aoum

Solution 5 (Circles and Trigonometry)

AIME2025II P14 Solution5.PNG

Since $KB=KL=KA=14$ and $LK=LA=LC=14$, we can construct 2 circles of radus 14 with $K$ and $L$ as the center of the two circles. Let the intersection of the 2 circles other than $A$ be point $M$. Connect $BM$, $CM$, $KM$, and $LM$. Connect $AM$, which is the radical axis of the 2 circles.

From the figure, we know that \[[KLCB] = [KLCMB] - [BMC]\] \[[KLCB] = [BKM] + [CLM] + [KLM] - [BMC]\]

Let $\angle{BAM} = \theta$, which means that $\angle{CAM} = \frac{\pi}{2} - \theta$. For easier calculation, we temporarily define the radius of the 2 circles (which is 14) to be $R$. $\angle{BAM}$ is an inscribed angle and $\angle{BKM}$ is a central angle, so $\angle{BKM} = 2\angle{BAM} = 2\theta$. Similar with the other side, $\angle{CLM} = \pi-2\theta$. $KM = KL = LM = R$, so $\triangle{BKM}$ is an equilateral triangle.

Using the Law of Cosines, we get the area of each little triangle. \[[BKM] = \frac{1}{2}\cdot R^2\cdot\sin(2\theta)\] \[[CLM] = \frac{1}{2}\cdot R^2\cdot\sin(\pi-2\theta) = \frac{1}{2}\cdot R^2\cdot\sin(2\theta)\] \[[KLM] = \frac{1}{2}\cdot\sin({\frac{\pi}{3}})=\frac{\sqrt3}{4}R^2\] [BMC]=12|BM||MC|sin(5π6)=12122Rsin(θ)2Rsin(π2θ)=R2sin(θ)cos(θ)=12R2sin(2θ)

We can conclude that \[[KLCB] = \frac{1}{2}\cdot R^2\cdot\sin(2\theta)+\frac{1}{2}\cdot R^2\cdot\sin(2\theta)+\frac{\sqrt3}{4}R^2-\frac{1}{2}\cdot R^2\sin(2\theta)\] \[[KLCB] = {14}^2\cdot(\frac{\sin(2\theta)}{2}+\frac{\sqrt3}{4})\]

Now, we just needed to find the value of $\sin(2\theta)$. We analyze the $\triangle{BMC}$. We already know that $\angle{BMC} = {150}^{\circ}$ and $BM = 2R\sin(\theta)$ and $BM = 2R\cos(\theta)$. Using the Laws of Cosines (again!) and the given condition of $BC = 38$, we can create a formula on $\theta$.

\[{BC}^2 = {BM}^2+{CM}^2-2\cdot BM\cdot MC\cdot\cos(\angle{BMC})\] \[{BC}^2 = (2R\sin(\theta))^2+(2R\cos(\theta))^2-2\cdot\cos({150}^{\circ})\cdot(2R\cos(\theta))\cdot(2R\cos(\theta)) = {38}^2\] \[4R^2(\sin^2(\theta)+\cos^2(\theta)+\sqrt3\sin(\theta)\cos(\theta)) = {38}^2\] \[4R^2(1+\frac{\sqrt3}{2}\cdot\sin(2\theta)) = {38}^2\] \[4R^2+\frac{4R^2\sqrt3}{2}\cdot\sin(2\theta)) = {38}^2\] \[\sin(2\theta) = \frac{2}{\sqrt3}\cdot(\frac{{38}^2}{4\cdot{38}^2}-1)\] \[\sin(2\theta) = \frac{2\cdot165}{\sqrt3\cdot{14}^2} = \frac{165}{98\sqrt3}\]

We put the calculated value of $\sin(2\theta)$ back into $[KLCB]$: \[[KLCB] = {14}^2\cdot(\frac{165}{2\cdot98\sqrt3}+\frac{\sqrt3}{4})\] \[[KLCB] = 55\sqrt3+49\sqrt3 = 104\sqrt3\]

Therefore,$n=\boxed{104}$.

~cassphe

Solution 6 (Trig Identities; warning: bashy)

Consider a diagram to the original problem (credit to solution 4):

[asy] import math; import geometry; import olympiad; point A,B,C,L,K; A=(0,0); C=(16sqrt(3),0); B=(0,26); L=(8sqrt(3),2); K=(3sqrt(3),13); draw(A--B--C--cycle); draw(A--K--L--cycle); draw(B--K); draw(C--L); draw(B--L); label("A",A,SW); label("B",B,NW); label("C",C,SE); label("K",K,W); label("L",L,NE); markscalefactor=1; [/asy]

Now, let us simplify the problem further. We know that $K$ and $L$ must lie on the perpendicular bisectors of $AB$ and $AC$, respectively. The real problem here is the equilateral triangle in the middle, inscribed in a rectangle with diagonal length 19.

We create a further simplified problem: given that the inscribed equilateral triangle of a certain rectangle with diagonal length $19$ has side length $14$, find the sides and intersection points on this rectangle. For reference, here is a diagram:

[asy] import math; import geometry; import olympiad; point A,B,C,D,L,K; A=(0,0); D=(13,0); B=(0,8sqrt(3)); C=(13,8sqrt(3)); L=(13,3sqrt(3)); K=(2,8sqrt(3)); draw(A--B--C--D--cycle); draw(A--K--L--cycle); label("A",A,SW); label("B",B,NW); label("C",C,NE); label("K",K,N); label("L",L,E); label("D",D,SE); markscalefactor=1; [/asy]


Note the angles $\angle{LAD}$ and $\angle{BAK}$. Since $\angle{LAD} + \angle{BAK} + 60^{\circ} = 90^{\circ}$, $\angle{LAD} + \angle{BAK} = 30^{\circ}$, and $\angle{BAK} = 30^{\circ} - \angle{LAD}$. Thus, let $\angle{LAD} = \alpha$ and $\angle{BAK} = 30 - \alpha$.

Now, we know that $AB^2 + AD^2 = 19^2$, as the hypotenuse of the larger right triangle is $38$. However, we can also express AB and AB in terms of $\alpha$: $AB = 14(\cos(30^{\circ}-\alpha))$ and $AD = 14(\cos(\alpha))$. Thus, $\cos^2(\alpha) + \cos^2(30^{\circ}-\alpha) = 361/196$. We expand this using the cosine difference identity:

$\cos^2(\alpha) + (\cos(30^{\circ})\cos(\alpha) + \sin(30^{\circ})\sin(\alpha))^2 = \frac{361}{196}$

$\frac{7}{4}\cos^2(\alpha) + \frac{1}{4}\sin^2(\alpha) + \frac{\sqrt3}{2}\sin(\alpha)\cos(\alpha) = \frac{361}{196}$

Using the fact that $\sin^2(\alpha) + \cos^2(\alpha) = 1$, then multiplying the entire equation by $2$,

$3\cos^2(\alpha) + \sqrt3\sin(\alpha)\cos(\alpha) = \frac{156}{49}$

Now, to save some writing, let us denote $\sin(\alpha)$ with $x$, and $\cos(\alpha)$ with $y$.

We have the following equations:

$x^2 + y^2 = 1$

$3y^2 + \sqrt3xy = \frac{156}{49}$

Substituting $x$ for $y$, moving $3y^2$ to the left side, squaring, and dividing by 9, we end up with the quartic:

$\frac{4}{3}y^4 - \frac{361}{147}y^2 + \frac{52^2}{49^2} = 0$

Using the quadratic formula, we end up with this:

$y^2 = \frac{\frac{361}{49} \pm \frac{1}{49}\cdot\sqrt{361^2 - 208^2\cdot3}}{8}$

Now, we could just compute $361^2 - 208^2\cdot3$, but instead, we can do this:

$361^2 - 208^2\cdot3 = (129600 + 720 + 1) - (40000 + 3200 + 64)\cdot3$

$(129600 + 721) - (43200 + 64)\cdot3$

$(129600 + 721) - (129600 + 192) = 529 = 23^2$

Thus, we have two cases:

$1. \cos(\alpha) = \frac{13}{14}$

$2. \cos(\alpha) = \frac{4\sqrt3}{7}$

Both lead to the same side lengths of the rectangle: $8\sqrt3$, and $13$. Referring back to our original rectangle diagram and plugging in our trigonometric values, we get that $CK = 13 - 2 = 11$, and $CL = 8\sqrt3 - 3\sqrt3 = 5\sqrt3$. Thus, the area of the original quadrilateral is $\frac{88\sqrt3 + 55\sqrt3 + 65\sqrt3}{2}$, or $\boxed{104}\sqrt3$.

~Stead

Solution 7 (analytic geometry with roots of unity)

[asy] import math; import geometry; import olympiad; point A,B,C,L,K; A=(0,0); C=(16sqrt(3),0); B=(0,26); L=(8sqrt(3),2); K=(3sqrt(3),13); point M,N; M=(8sqrt(3), 0); N=(0,13); draw(A--B--C--cycle); draw(A--K--L--cycle); draw(B--K); draw(C--L); draw(N--K); draw(L--M); label("A",A,SW); label("B",B,NW); label("C",C,SE); label("K",K,ENE); label("L",L,NE); label(“N”,N,W); label(“M”,M,S); point am, ml, an, nk, mc, bn; am=(4sqrt(3), 0); mc=(12sqrt(3),0); ml=(8sqrt(3),1); an=(0,6.5); bn=(0,19.5); nk=(2.5981, 13); label(“a",am,S); label(“a",mc,S); label(“y”,ml,ESE); label(“b”,an,W); label(“b”,bn,W); label(“x”,nk,S); markscalefactor=1; [/asy] This diagram is modified from the solution 4 diagram. Let $M$ be the midpoint of $AC$, and let $N$ be the midpoint of $AB$.

We place the diagram onto the Cartesian coordinate grid. Let $A = (0, 0)$, $M = (a, 0)$, $C = (2a, 0)$, $N = (0, b)$, and $B = (0, 2b)$. We are given $AL = CL$, so $\triangle ACL$ is isosceles. Therefore, $LM$ is the perpendicular bisector of $AC$, so we can let $L = (a, y)$. Similarly, we’re given $AK = BK$, so $\triangle ABK$ is also isosceles, and $NK$ is the perpendicular bisector of $AB$. Therefore, we can let $K = (x, b)$.

We have $AB = 2b$ and $AC = 2a$. We’re given that $\angle BAC = 90^\circ$ and $BC = 38$, so by the Pythagorean theorem, \[(2a)^2 + (2b)^2 = 38^2 \implies 4a^2 + 4b^2 = 1444 \implies a^2 + b^2 = 361.\]

We now place the diagram onto the complex plane. We use the x-axis of the coordinate plane as the complex plane’s real axis, and we use the y-axis of the coordinate plane as the complex plane’s imaginary axis. So, on the complex plane, $A = 0$, $L = a + yi$, and $K = x + bi$. Also, since we are given $AK = KL = AL$, $\triangle AKL$ is equilateral. In addition, since $AL = AK$, $\angle KAL = 60^\circ$, and because we constructed our diagram with $K$ counterclockwise of $L$ (if it were the other way around, we could go through the same steps as this solution, but with variables switched around), $K$ is a $60^\circ$ counterclockwise rotation of $L$ about $A$, and $L$ is a $60^\circ$ clockwise or $300^\circ$ counterclockwise rotation of $K$ about $A$.

Rotation on the complex plane is equivalent to multiplying by a root of unity. Here, $K$ and $L$ are rotated a multiple of $60^\circ$ to each other about $A$. $60^\circ$ is one-sixth of a full circle, so to go from $L$ to $K$ or $K$ to $L$, we multiply by a 6th root of unity. Specifically, to go from $L$ to $K$, we multiply by $\dfrac{1}{2} + \dfrac{\sqrt{3}}{2}i$, and to go from $K$ to $L$, we multiply by $\dfrac{1}{2} - \dfrac{\sqrt{3}}{2}i$.

We multiply the coordinate of $L$ by $\dfrac{1}{2} + \dfrac{\sqrt{3}}{2}i$ on the complex plane to obtain equations for the coordinates of $K$: \[(a + yi)\left(\dfrac{1}{2} + \dfrac{\sqrt{3}}{2}i\right) = \left(\dfrac{a}{2} - \dfrac{\sqrt{3}}{2}y\right) + \left(\dfrac{y}{2} + \dfrac{\sqrt{3}}{2}a\right)i = x + bi.\] Equating real and imaginary parts, we obtain \[x = \dfrac{a}{2} - \dfrac{\sqrt{3}}{2}y \text{ and } b = \dfrac{y}{2} + \dfrac{\sqrt{3}}{2}a.\]

Similarly, we multiply the coordinate of $K$ by $\dfrac{1}{2} - \dfrac{\sqrt{3}}{2}i$ to obtain equations for the coordinates of $L$: \[(x + bi)\left(\dfrac{1}{2} - \dfrac{\sqrt{3}}{2}i\right) = \left(\dfrac{x}{2} + \dfrac{\sqrt{3}}{2}b\right) + \left(\dfrac{b}{2} - \dfrac{\sqrt{3}}{2}x\right) = a + yi.\] Equating real and imaginary parts, we obtain \[a = \dfrac{x}{2} + \dfrac{\sqrt{3}}{2}b \text{ and } y = \dfrac{b}{2} - \dfrac{\sqrt{3}}{2}x.\]

We now look back at the problem to see what it asks for: $[BKLC]$. Looking at the diagram, we see we can express the area of the quadrilateral as the area of the big right triangle $ABC$ minus the two isosceles triangles $ABK$ and $ALC$ minus the equilateral triangle $AKL$: \[[BKLC] = [ABC] - [ABK] - [ACL] - [AKL].\]

We are given that $AK = KL = AL = 14$, so the area of equilateral triangle $AKL$ is $\dfrac{\sqrt{3}}{4} \cdot 14^2 = 49\sqrt{3}$. Also, we can use $AC = 2a$ as the base of $\triangle ABC$ and $AB = 2b$ as the height, so $[ABC] = \dfrac{(2a)(2b)}{2} = 2ab$. Similarly, we use $AC = 2a$ as the base of $\triangle ACL$ and $ML = y$ ($M = (a, 0)$ and $L = (a, y)$, so the distance between the two is equal to $y$) as the height, so $[ACL] = \dfrac{(2a)(y)}{2} = ay$. Finally, we use $AB = 2b$ and $KN = x$ ($N = (0, b)$ and $K = (x, b)$, so the distance between the two is equal to $x$) as the base and height of $\triangle ABK$ respectively, so $[ABK] = \dfrac{(2b)(x)}{2} = bx$. Therefore, \[[BKLC] = [ABC] - [ABK] - [ACL] - [AKL] = 2ab - bx - ay - 49\sqrt{3}.\]

We have already shown that $b = \dfrac{y}{2} + \dfrac{\sqrt{3}}{2}a$. Substituting this into $a^2 + b^2 = 361$, we have \[a^2 + \left(\dfrac{y}{2} + \dfrac{\sqrt{3}}{2}a\right)^2 = 361.\] Expanding this out, we have \[a^2 + \dfrac{y^2}{4} + \dfrac{\sqrt{3}}{2}ay + \dfrac{3}{4}a^2 = 361.\] Multiplying both sides by $4$ and rearranging the left side, we have \[7a^2 + y^2 + 2ay\sqrt{3} = 1444.\] We previously showed that $AC \perp ML$, so $AM \perp ML$ (since $M$ is on $AC$). Therefore, $\triangle AML$ has a right angle at $M$. By the Pythagorean theorem, $AM^2 + ML^2 = a^2 + y^2 = AL^2 = 196$. Subtracting $a^2 + y^2$ from the left side and $196$ from the right side, we obtain \[6a^2 + 2ay\sqrt{3} = 1248.\] Dividing both sides of the equation by $2\sqrt{3}$ and factoring $a$ out of the left side, we have \[a(a\sqrt{3} + y) = 208\sqrt{3}.\] However, we have $b = \dfrac{y}{2} + \dfrac{\sqrt{3}}{2}a$, so the expression inside the parentheses is simply $2b$! Therefore, \[2ab = 208\sqrt{3}.\]

The algebra’s not over yet. We also showed that $a = \dfrac{x}{2} + \dfrac{\sqrt{3}}{2}b$, so substituting that into $a^2 + b^2 + 361$, we obtain \[b^2 + \left(\dfrac{x}{2} + \dfrac{\sqrt{3}}{2}b\right)^2 = 361.\] Expanding this out, we have \[b^2 + \dfrac{x^2}{4} + \dfrac{\sqrt{3}}{2}bx + \dfrac{3}{4}b^2 = 361.\] Multiplying both sides by $4$ and rearranging the left side, we now have \[7b^2 + x^2 + 2xb\sqrt{3} = 1444.\] Does this equation look familiar? We previously showed that $NK \perp AB$. Therefore, $NK \perp AN$ (since $N$ is on $AB$). So, $\triangle ANK$ has a right angle at $N$. By the Pythagorean theorem, $AN^2 + KN^2 = b^2 + x^2 = AK^2 = 196$. Subtracting $b^2 + x^2$ from the left side and $196$ from the right side, we have \[6b^2 + 2xb\sqrt{3} = 1248.\] We previously also had the equation $6a^2 + 2ay\sqrt{3} = 1248$, and adding this equation to the above equation and factoring out $2\sqrt{3}$, we have \[6a^2 + 6b^2 + 2\sqrt{3}(bx + ay) = 2496.\] We previously showed $a^2 + b^2 = 361$, so $6a^2 + 6b^2 = 6 \cdot 361 = 2166$. Subtracting $6a^2 + 6b^2$ from the left side and $2166$ from the right side, we obtain $2\sqrt{3}(bx + ay) = 330$. Finally, dividing both sides by $2\sqrt{3}$, we have \[bx + ay = 55\sqrt{3}.\]

We previously arrived at this expression for $[BKLC]$: \[[BKLC] = 2ab - bx - ay - 49\sqrt{3}.\] We now know $2ab = 208\sqrt{3}$ and $bx + ay = 55\sqrt{3}$, so we can simply substitute them in. Therefore, \[[BKLC] = 2ab - bx - ay - 49\sqrt{3} = 208\sqrt{3} - 55\sqrt{3} - 49\sqrt{3} = 104\sqrt{3}.\] Finally, we are given $[BKLC] = n\sqrt{3}$ for some integer $n$. We know $[BKLC] = 104\sqrt{3}$, so $n = \boxed{104}$.

Notice that $[BKLC] = 104\sqrt{3} = \dfrac{208\sqrt{3}}{2} = \dfrac{[ABC]}{2}$. Is this a coincidence?

~V0305

Solution 8

2025 AIME II 14 vvsss.png

$AK = BK = KL, \angle AKL = 60 ^\circ \implies \angle ABL = 30^\circ.$

Similarly, $\angle ACK = 30^\circ.$ \[\angle BAK = \angle ABK, \angle LBK + \angle ABK = 30^\circ.\] \[\angle CAL + \angle BAK = 90^\circ - \angle LAK = 30^\circ \implies\] \[\angle CAL = \angle LBK \implies \triangle KLB = \triangle LAC \implies\] $AC = BL.$ Similarly, $AB = CK.$

Denote the area of triangle $X$ as $[X].$ \[2[ABL] = AB \cdot BL \cdot \sin 30^\circ = \frac{AB \cdot AC}{2} = [ABC].\] Similarly, $[ABL] = [ACK] = \frac {[ABC]}{2}.$ \[[BKLC] = [ABC] - [ABL] - [ALC]+ [BLK] = [ABC] - [ABL] = [ABL].\] By applying the Law of Cosines on $\triangle ABL,$ we get $AB^2 + BL^2 - 2 AB \cdot BL \cos 30^\circ = AL^2 \implies  AB^2 + AC^2 - AB \cdot AC \sqrt{3} = AL^2 \implies$ \[BC^2 - AL^2 = 4 [BKLC] \sqrt{3} \implies\] \[[BLKC] = \frac {38^2-14^2}{4 \sqrt{3}} = \frac{19^2-7^2}{3} \sqrt{3} = 4 \cdot 26 \sqrt{3} = 104 \sqrt{3}.\] vladimir.shelomovskii@gmail.com, vvsss

Solution 9

$\triangle KAL$ is clearly equilateral, and $\triangle AKB$ and $\triangle ALC$ are clearly isosceles. Now, we can do a bit of angle chasing. Say $\angle AKB = 2\theta$. Then, since $\triangle AKB$ is isosceles, $\angle ABK = 90 - \theta$. $\angle KAL = 60^\circ$, so $\angle LAC = \theta - 60$, so $\angle ALC = 300 - 2\theta$, so $\angle KLC = 2\theta$. Since the angles are congruent, $\triangle AKB$ is congruent to $\triangle KLC$. As such, we can rotate it around the center of $\triangle KAL$ onto side AL to produce $\triangle LAD$. Because all the triangles are congruent, connecting the congruent corners will all produce the same length. From BC, we see that this length is $38$, so $\triangle BCD$ is equilateral with side length $38$. This triangle is comprised of 3 quadrilaterals and $\triangle KAL$ in the center, and it's easy to see that each quadrilateral is congruent to $BKLC$. As such, $[BKLC] = \frac{[BCD]-[KAL]}{3} = \frac{361 \sqrt{3} - 49 \sqrt{3}}{3} = 104 \sqrt{3}$, giving an answer of $\boxed{104}$.

~noob1877

Video Solution (Angle chasing and congruent triangles)

https://youtu.be/APaVy8OqJ04?si=MSBv1fS1ajjqcxN6

Remarks

This problem can be approached either by analytic geometry or by trigonometric manipulation. The characteristics of this problem make it highly similar to 2017 AIME I Problem 15 (Link).

~Bloggish

See also

2025 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC logo.png