Difference between revisions of "2020 USOMO Problems"
Brendanb4321 (talk | contribs) |
Brendanb4321 (talk | contribs) |
||
Line 47: | Line 47: | ||
Let <math>n \ge 2</math> be an integer. Let <math>x_1 \ge x_2 \ge \cdots \ge x_n</math> and <math>y_1 \ge y_2 \ge \cdots \ge y_n</math> be <math>2n</math> real numbers such that | Let <math>n \ge 2</math> be an integer. Let <math>x_1 \ge x_2 \ge \cdots \ge x_n</math> and <math>y_1 \ge y_2 \ge \cdots \ge y_n</math> be <math>2n</math> real numbers such that | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
− | 0 &= x_1 + x_2 + \cdots + x_n = y_1 + y_2 + \cdots + y_n | + | 0 &= x_1 + x_2 + \cdots + x_n = y_1 + y_2 + \cdots + y_n\ |
\text{and }1 &= x_1^2+x_2^2+\cdots+x_n^2=y_1^2+y_2^2+\cdots+y_n^2. | \text{and }1 &= x_1^2+x_2^2+\cdots+x_n^2=y_1^2+y_2^2+\cdots+y_n^2. | ||
\end{align*} | \end{align*} |
Revision as of 02:25, 23 June 2020
Contents
[hide]Day 1
Problem 1
Let be a fixed acute triangle inscribed in a circle
with center
. A variable point
is chosen on minor arc
of
, and segments
and
meet at
. Denote by
and
the circumcenters of triangles
and
, respectively. Determine all points
for which the area of triangle
is minimized.
Problem 2
An empty cube is given, and a
grid of square unit cells is drawn on each of its six faces. A beam is a
rectangular prism. Several beams are placed inside the cube subject to the following conditions:
The two
faces of each beam coincide with unit cells lying on opposite faces of the cube. (Hence, there are
possible positions for a beam.)
No two beams have intersecting interiors.
The interiors of each of the four
faces of each beam touch either a face
of the cube or the interior of the face of another beam.
What is the smallest positive number of beams that can be placed to satisfy these conditions?
Problem 3
Let be an odd prime. An integer
is called a quadratic non-residue if
does not divide
for any integer
.
Denote by the set of all integers
such that
, and both
and
are quadratic non-residues. Calculate the remainder when the product of the elements of
is divided by
.
Day 2
Problem 4
Suppose that are distinct ordered pairs of nonnegative integers. Let
denote the number of pairs of integers
satisfying
and
. Determine the largest possible value of
over all possible choices of the
ordered pairs.
Problem 5
A finite set of points in the coordinate plane is called overdetermined if
and there exists a nonzero polynomial
, with real coefficients and of degree at most
, satisfying
for every point
. For each integer
, find the largest integer
(in terms of
) such that there exists a set of
distinct points that is not overdetermined, but has
overdetermined subsets.
Problem 6
Let be an integer. Let
and
be
real numbers such that
Prove that
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.
2020 USAMO (Problems • Resources) | ||
Preceded by 2019 USAMO |
Followed by 2021 USAMO | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |