Difference between revisions of "2023 OIM Problems/Problem 2"
(Created page with "== Problem == Let <math>\mathbb{Z}</math> be the set of integers. Find all functions <math>f: \mathbb{Z} \to \mathbb{Z}</math> such that: <cmath>2023f(f(x))+2022x^2=2022f(x)+...") |
(solution) |
||
Line 7: | Line 7: | ||
== Solution == | == Solution == | ||
− | {{ | + | Consider the equation mod <math>2023</math>: |
+ | \begin{align*} | ||
+ | 0f(f(x))+(-1)x^2&\equiv(-1)f(x)+0[f(x)]^2+1\pmod{2023}\\ | ||
+ | -x^2 &\equiv -f(x)+1 \pmod{2023}\\ | ||
+ | f(x) &\equiv x^2+1 \pmod{2023}\\ | ||
+ | \end{align*} | ||
+ | Thus by definition, for every integer <math>x</math>, there exists some integer <math>k_x</math> such that | ||
+ | <cmath>f(x)=x^2+1+2023k_x</cmath> | ||
+ | If we substitute this into the initial functional equation, we get: | ||
+ | <cmath>2023((x^2+1+2023k_x)^2+1+2023k_x)+2022x^2=2022(x^2+1+2023k_x)+2023(x^2+1+2023k_x)^2+1</cmath> | ||
+ | <cmath>\Rightarrow 2023(1+2023k_x)+2022x^2=2022(x^2+1+2023k_x)+1</cmath> | ||
+ | <cmath>\Rightarrow2023(1+2023k_x)=2022(2023k_x)+2023</cmath> | ||
+ | <cmath>\Rightarrow2023(2023k_x)=2022(2023k_x)</cmath> | ||
+ | <cmath>\Rightarrow k_x=0</cmath> | ||
+ | Thus the only functional equation possible is <math>\boxed{f(x)\equiv x^2+1}</math>, which works upon substitution. | ||
+ | |||
+ | ~ [https://artofproblemsolving.com/wiki/index.php/User:Eevee9406 eevee9406] | ||
== See also == | == See also == | ||
https://sites.google.com/associacaodaobm.org/oim-brasil-2023/pruebas | https://sites.google.com/associacaodaobm.org/oim-brasil-2023/pruebas |
Latest revision as of 18:31, 8 April 2025
Problem
Let be the set of integers. Find all functions
such that:
for each integer .
Solution
Consider the equation mod :
\begin{align*}
0f(f(x))+(-1)x^2&\equiv(-1)f(x)+0[f(x)]^2+1\pmod{2023}\\
-x^2 &\equiv -f(x)+1 \pmod{2023}\\
f(x) &\equiv x^2+1 \pmod{2023}\\
\end{align*}
Thus by definition, for every integer
, there exists some integer
such that
If we substitute this into the initial functional equation, we get:
Thus the only functional equation possible is
, which works upon substitution.
See also
https://sites.google.com/associacaodaobm.org/oim-brasil-2023/pruebas