Difference between revisions of "2025 AIME I Problems/Problem 2"

m (Undo revision 242992 by Vihaanapple (talk))
(Tag: Undo)
Line 1: Line 1:
 
==Problem==
 
==Problem==
In <math>\triangle ABC</math> points <math>D</math> and <math>E</math> lie on <math>\overline{AB}</math> so that <math>AD < AE < AB</math>, while points <math>F</math> and <math>G</math> lie on <math>\overline{AC}</math> so that <math>AF < AG < AC</math>. Suppose <math>AD = 4</math>, <math>DE = 16</math>, <math>EB = 8</math>, <math>AF = 13</math>, <math>FG = 52</math>, and <math>GC = 26</math>. Let <math>M</math> be the reflection of <math>D</math> through <math>F</math>, and let <math>N</math> be the reflection of <math>G</math> through <math>E</math>. The area of quadrilateral <math>DEGF</math> is <math>288</math>. Find the area of heptagon <math>AFNBCEM</math>, as shown in the figure below.
+
On <math>\triangle ABC</math> points <math>A</math>, <math>D</math>, <math>E</math>, and <math>B</math> lie in that order on side <math>\overline{AB}</math> with <math>AD = 4</math>, <math>DE = 16</math>, and <math>EB = 8</math>. Points <math>A</math>, <math>F</math>, <math>G</math>, and <math>C</math> lie in that order on side <math>\overline{AC}</math> with <math>AF = 13</math>, <math>FG = 52</math>, and <math>GC = 26</math>. Let <math>M</math> be the reflection of <math>D</math> through <math>F</math>, and let <math>N</math> be the reflection of <math>G</math> through <math>E</math>. Quadrilateral <math>DEGF</math> has area <math>288</math>. Find the area of heptagon <math>AFNBCEM</math>.
 +
 
 
<asy>
 
<asy>
 
unitsize(14);
 
unitsize(14);

Revision as of 12:49, 9 March 2025

Problem

On $\triangle ABC$ points $A$, $D$, $E$, and $B$ lie in that order on side $\overline{AB}$ with $AD = 4$, $DE = 16$, and $EB = 8$. Points $A$, $F$, $G$, and $C$ lie in that order on side $\overline{AC}$ with $AF = 13$, $FG = 52$, and $GC = 26$. Let $M$ be the reflection of $D$ through $F$, and let $N$ be the reflection of $G$ through $E$. Quadrilateral $DEGF$ has area $288$. Find the area of heptagon $AFNBCEM$.

[asy] unitsize(14); pair A = (0, 9), B = (-6, 0), C = (12, 0), D = (5A + 2B)/7, E = (2A + 5B)/7, F = (5A + 2C)/7, G = (2A + 5C)/7, M = 2F - D, N = 2E - G; filldraw(A--F--N--B--C--E--M--cycle, lightgray); draw(A--B--C--cycle); draw(D--M); draw(N--G); dot(A); dot(B); dot(C); dot(D); dot(E); dot(F); dot(G); dot(M); dot(N); label("$A$", A, dir(90)); label("$B$", B, dir(225)); label("$C$", C, dir(315)); label("$D$", D, dir(135)); label("$E$", E, dir(135)); label("$F$", F, dir(45)); label("$G$", G, dir(45)); label("$M$", M, dir(45)); label("$N$", N, dir(135)); [/asy]

Solution 1

Note that the triangles outside $\triangle ABC$ have the same height as the unshaded triangles in $\triangle ABC$. Since they have the same bases, the area of the heptagon is the same as the area of triangle $ABC$. Therefore, we need to calculate the area of $\triangle ABC$. Denote the length of $DF$ as $x$ and the altitude of $A$ to $DF$ as $h$. Since $\triangle ADF \sim \triangle AEG$, $EG = 5x$ and the altitude of $DFGE$ is $4h$. The area $[DFGE] = \frac{5x + x}{2} \cdot 4h = 3x \cdot 4h = 12xh = 288 \implies xh = 24$. The area of $\triangle ABC$ is equal to $\frac{1}{2} 7x \cdot 7h = \frac{1}{2} 49xh = \frac{1}{2} 49 \cdot 24 = \frac{1}{2} 1176 = \boxed{588}$.

~alwaysgonnagiveyouup

Solution 2

Because of reflections, and various triangles having the same bases, we can conclude that $|AFNBCEM| = |ABC|$. Through the given lengths of $4-16-8$ on the left and $13-52-26$ on the right, we conclude that the lines through $\triangle ABC$ are parallel, and the sides are in a $1:4:2$ ratio. Because these lines are parallel, we can see that $ADF,~AEG,~ABC$, are similar, and from our earlier ratio, we can give the triangles side ratios of $1:5:7$, or area ratios of $1:25:49$. Quadrilateral $DEGF$ corresponds to the $|AEG|-|ADF|$, which corresponds to the ratio $25-1=24$. Dividing $288$ by $24$, we get $12$, and finally multiplying $12 \cdot 49$ gives us our answer of $\boxed{588}$

~shreyan.chethan

Video Solution 1 by SpreadTheMathLove

https://www.youtube.com/watch?v=J-0BapU4Yuk

Video Solution(Fast! Easy!)

https://youtu.be/LQyncubz30U

~MC

See also

2025 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 1
Followed by
Problem 3
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC logo.png