Difference between revisions of "2024 AIME II Problems/Problem 10"
Happypi31415 (talk | contribs) (→Solution 2) |
|||
Line 12: | Line 12: | ||
Denote <math>AB=a, AC=b, BC=c</math>. By the given condition, <math>\frac{abc}{4A}=13; \frac{2A}{a+b+c}=6</math>, where <math>A</math> is the area of <math>\triangle{ABC}</math>. | Denote <math>AB=a, AC=b, BC=c</math>. By the given condition, <math>\frac{abc}{4A}=13; \frac{2A}{a+b+c}=6</math>, where <math>A</math> is the area of <math>\triangle{ABC}</math>. | ||
− | Moreover, since <math>OI\bot AI</math>, the second intersection of the line <math>AI</math> and <math>(ABC)</math> is the reflection of <math>A</math> about <math>I</math>, denote that as <math>D</math>. By | + | Moreover, since <math>OI\bot AI</math>, the second intersection of the line <math>AI</math> and <math>(ABC)</math> is the reflection of <math>A</math> about <math>I</math>, denote that as <math>D</math>. By the incenter-excenter lemma, <math>DI=BD=CD=\frac{AD}{2}\implies BD(a+b)=2BD\cdot c\implies a+b=2c</math>. |
Thus, we have <math>\frac{2A}{a+b+c}=\frac{2A}{3c}=6, A=9c</math>. Now, we have <math>\frac{abc}{4A}=\frac{abc}{36c}=\frac{ab}{36}=13\implies ab=\boxed{468}</math> | Thus, we have <math>\frac{2A}{a+b+c}=\frac{2A}{3c}=6, A=9c</math>. Now, we have <math>\frac{abc}{4A}=\frac{abc}{36c}=\frac{ab}{36}=13\implies ab=\boxed{468}</math> |
Revision as of 20:34, 10 February 2024
Problem
Let have circumcenter
and incenter
with
, circumradius
, and inradius
. Find
.
Solution
By Euler's formula , we have
. Thus, by the Pythagorean theorem,
. Let
; notice
is isosceles and
which is enough to imply that
is the midpoint of
, and
itself is the midpoint of
where
is the
-excenter of
. Therefore,
and
Note that this problem is extremely similar to 2019 CIME I/14.
Solution 2
Denote . By the given condition,
, where
is the area of
.
Moreover, since , the second intersection of the line
and
is the reflection of
about
, denote that as
. By the incenter-excenter lemma,
.
Thus, we have . Now, we have
~Bluesoul
Solution 3
Denote by and
the circumradius and inradius, respectively.
First, we have \[ r = 4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \hspace{1cm} (1) \]
Second, because ,
Thus,
Taking , we get
\[
4 \sin \frac{B}{2} \sin \frac{C}{2} = \cos \frac{B-C}{2} .
\]
We have
Plugging this into the above equation, we get \[ \cos \frac{B-C}{2} = 2 \cos \frac{B+C}{2} . \hspace{1cm} (3) \]
Now, we analyze Equation (2). We have
Solving Equations (3) and (4), we get \[ \cos \frac{B+C}{2} = \sqrt{\frac{r}{2R}}, \hspace{1cm} \cos \frac{B-C}{2} = \sqrt{\frac{2r}{R}} . \hspace{1cm} (5) \]
Now, we compute . We have
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2024 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.