Difference between revisions of "2025 AIME II Problems/Problem 1"
(→Solution) |
(→Solution 1) |
||
Line 24: | Line 24: | ||
</asy> | </asy> | ||
− | Let <math>AB=a</math>, <math>BC=b</math>, <math>CD=c</math>, <math>DE=d</math> and <math>EF=e</math>. Then we know that <math>a+b+c+d+e</math>=73, <math>a+b=26</math>, <math>b+c=22</math>, <math>c+d=31</math> and <math>d+e=33</math>. From this we can easily deduce <math>c=14</math> and <math>a+e=34</math> thus <math>b+c+d=39</math>. Using Heron's formula we can calculate the area of <math>\triangle{CGD}</math> to be <math>\sqrt{(42)(28)(12)(2)}=168</math>, and since the base of <math>\triangle{BGE}</math> is <math>\frac{39}{14}</math> of that of <math>\triangle{CGD}</math>, we calculate the area of <math>\triangle{BGE}</math> to be <math>168\times \frac{39}{14}=468</math>. | + | Let <math>AB=a</math>, <math>BC=b</math>, <math>CD=c</math>, <math>DE=d</math> and <math>EF=e</math>. Then we know that <math>a+b+c+d+e</math>=73, <math>a+b=26</math>, <math>b+c=22</math>, <math>c+d=31</math> and <math>d+e=33</math>. From this we can easily deduce <math>c=14</math> and <math>a+e=34</math> thus <math>b+c+d=39</math>. Using Heron's formula we can calculate the area of <math>\triangle{CGD}</math> to be <math>\sqrt{(42)(28)(12)(2)}=168</math>, and since the base of <math>\triangle{BGE}</math> is <math>\frac{39}{14}</math> of that of <math>\triangle{CGD}</math>, we calculate the area of <math>\triangle{BGE}</math> to be <math>168\times \frac{39}{14}=\boxed{468}</math>. |
==See also== | ==See also== |
Revision as of 22:51, 13 February 2025
Problem
Six points and
lie in a straight line in that order. Suppose that
is a point not on the line and that
and
Find the area of
Solution 1
A=(0,0); label("$A$", A, S); B=(1.5,0); label("$B$", B, S); C=(2.9,0); label("$C$", C, S); D=(4.2,0); label("$D$", D, S); E=(5.3,0); label("$E$", E, S); F=(6.5,0); label("$F$", F, S); G=(3.7,3); label("$G$", G, N); draw(A--B--C--D--E--F); draw(C--G--D); draw(B--G--E); (Error making remote request. Unknown error_msg)
Let ,
,
,
and
. Then we know that
=73,
,
,
and
. From this we can easily deduce
and
thus
. Using Heron's formula we can calculate the area of
to be
, and since the base of
is
of that of
, we calculate the area of
to be
.
See also
2025 AIME II (Problems • Answer Key • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.