Difference between revisions of "2024 AMC 10A Problems/Problem 6"

(Solution 2 (Recursive Approach))
Line 1: Line 1:
 
== Problem ==
 
== Problem ==
What is the minimum number of successive swaps of adjacent letters in the string <math>ABCDEF</math> that are needed to change the string to <math>FEDCBA?</math> (For example, <math>3</math> swaps are required to change <math>ABC</math> to <math>CBA;</math> one such sequence of swaps is
+
How many ordered pairs <math>(m, n)</math> of positive integers exist such that <math>m</math> is a factor of <math>54</math> and <math>mn</math> is a factor of <math>70</math>?
<math>ABC\to BAC\to BCA\to CBA.</math>)
 
  
<math>\textbf{(A)}~6\qquad\textbf{(B)}~10\qquad\textbf{(C)}~12\qquad\textbf{(D)}~15\qquad\textbf{(E)}~24</math>
+
<math>\textbf{(A)}~2 \qquad\textbf{(B)}~4 \qquad\textbf{(C)}~10 \qquad\textbf{(D)}~12 \qquad\textbf{(E)}~16</math>
  
== Solution 1 (Analysis) ==
+
==Solution==
Procedurally, it takes:
+
The greatest common divisor of <math>54</math> and <math>70</math> is <math>2</math>, so we know that <math>m</math> is either <math>1</math> or <math>2</math>. If <math>m = 1</math>, then <math>n</math> can be any factor of <math>70</math>, so <math>8</math> options. If <math>m=2</math>, <math>n</math> can be any factor of <math>35</math>, so <math>4</math> options. In total, there are <math>\boxed{\textbf{(D)}~12}</math> ordered pairs.
  
* <math>5</math> swaps for <math>A</math> to move to the sixth spot, giving <math>BCDEFA.</math>
+
~joshualiu315
 
 
* <math>4</math> swaps for <math>B</math> to move to the fifth spot, giving <math>CDEFBA.</math>
 
 
 
* <math>3</math> swaps for <math>C</math> to move to the fourth spot, giving <math>DEFCBA.</math>
 
 
 
* <math>2</math> swaps for <math>D</math> to move to the third spot, giving <math>EFDCBA.</math>
 
 
 
* <math>1</math> swap for <math>E</math> to move to the second spot (so <math>F</math> becomes the first spot), giving <math>FEDCBA.</math>
 
 
 
Together, the answer is <math>5+4+3+2+1=\boxed{\textbf{(D)}~15}.</math>
 
 
 
~MRENTHUSIASM
 
 
 
== Solution 2 (Recursive Approach)==
 
 
 
We can proceed by a recursive tactic on the number of letters in the string.
 
 
 
Looking at the string <math>A</math>, there are <math>0</math> moves needed to change it to the string <math>A</math>
 
 
 
Then, there is <math>1</math> move to change <math>AB</math> to <math>BA</math>.
 
 
 
Similarly, there is <math>3</math> moves needed for three letters (said in the problem).
 
 
 
There are <math>6</math> moves needed to change <math>ABCD</math> to <math>DCBA</math>.
 
 
 
We see a pattern of <math>0,1,3,6,...</math>. We notice that the difference between consecutive terms is increasing by <math>1</math>, so in the same way, for <math>5</math> letters, we would need <math>10</math> moves, and for <math>6</math>, we would need <math>\boxed{\textbf{(D)}~15}</math> moves.
 
 
 
Thinking why, when we start making these moves, we see that for a string of length <math>n</math>, it takes <math>n-1</math> moves to move the last letter to the front. After, we get a string that will be changed identically to a string of length <math>n-1</math>. This works in our pattern above and is another way to think about the problem!
 
 
 
~world123
 
 
 
Note:
 
 
 
The sequence consists of triangular numbers shifted a term up (as it starts with <math>0</math> on term <math>1</math> and <math>1</math> on term <math>2</math>.)
 
Thus, our explicit formula is <cmath>\dfrac{(n-1)(n+1-1)}{2} = \dfrac{(n)(n-1)}{2}</cmath> and as <math>n = 6</math> in this case (<math>6</math> letters), our answer is <math>\dfrac{(6)(6-1)}{2} = \boxed{\textbf{(D)}~15}</math>
 
 
 
~NSAoPS
 
 
 
== Solution 3 (Solution 2 Done Fast)==
 
 
 
We can see that the most efficient way to change <math>ABCDEF</math> to <math>FEDCBA</math> is the same as changing <math>ABCDE</math> to <math>EDCBA</math> and then moving <math>F</math> to the front in <math>5</math> moves. Similarly, this would carry on downwards, where to change <math>ABCDE</math> to <math>EDCBA</math> would be to change <math>ABCD</math> to <math>DCBA</math> and move <math>E</math> <math>4</math> times to the front. This pattern will carry on until <math>AB</math> to <math>BA</math> would be <math>1</math>, and <math>A</math> to <math>A</math> would be <math>0</math>. The answer would be <math>0(A)+1(B)+2(C)+3(D)+4(E)+5(F)</math>, which is <math>\boxed{\textbf{(D)}~15}</math> moves.
 
 
 
~Moonwatcher22
 
 
 
== Solution 4 (If you don't notice anything)==
 
Simply, just blindly doing it, the most straightforward way is to shift F all the way back. From ABCDEF:
 
 
 
<math>ABCDFE ->ABCFDE ->ABFCDE ->AFBCDE ->FABCDE</math>
 
 
 
For E:
 
 
 
<math>FABCED -> FABECD -> FAEBCD -> FEABCD</math>
 
 
 
For D:
 
 
 
<math>FEABDC -> FEADBC -> FEDABC</math>
 
 
 
For C:
 
 
 
<math>FEDACB -> FEDCAB</math>
 
 
 
For B:
 
 
 
FEDCBA
 
 
 
That's it, you don't need to do it with A. Still <math>\boxed{\textbf{(D)}~15}</math> moves.
 
 
 
~pepper2831
 
 
 
==Solution 5 (Inversions of Permutations)==
 
 
 
Let the letters <math>A, B, C, D, E, F</math> correspond to the numbers <math>1, 2, 3, 4, 5, 6</math> respectively. We want to find the number of swaps required to transform the permutation <math>1 2 3 4 5 6</math> into the permutation <math>6 5 4 3 2 1</math>.
 
 
 
Here, we let <math>1 2 3 4 5 6</math> be the natural order. Then the total number of inversions of the permutation <math>6 5 4 3 2 1</math> is <math>1+2+3+4+5=15</math>. Hence the answer is <math>\boxed{\textbf{(D)}~15}</math>
 
 
 
~tsun26
 
 
 
== Video Solution by Pi Academy ==
 
https://youtu.be/6qYaJsgqkbs?si=K2Ebwqg-Ro8Yqoiv
 
 
 
== Video Solution 1 by Power Solve ==
 
https://youtu.be/j-37jvqzhrg?si=ieBRx0-CUihcKttE&t=616
 
 
 
== Video Solution by Daily Dose of Math ==
 
 
 
https://youtu.be/-EFTk2pBFug
 
 
 
~Thesmartgreekmathdude
 
 
 
==Video Solution by SpreadTheMathLove==
 
https://www.youtube.com/watch?v=_o5zagJVe1U
 
 
 
==Video Solution by Just Math⚡==
 
https://youtu.be/KrkjGpk1uZs
 
  
 
==See also==
 
==See also==
 
{{AMC10 box|year=2024|ab=A|num-b=5|num-a=7}}
 
{{AMC10 box|year=2024|ab=A|num-b=5|num-a=7}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 21:27, 20 March 2025

Problem

How many ordered pairs $(m, n)$ of positive integers exist such that $m$ is a factor of $54$ and $mn$ is a factor of $70$?

$\textbf{(A)}~2 \qquad\textbf{(B)}~4 \qquad\textbf{(C)}~10 \qquad\textbf{(D)}~12 \qquad\textbf{(E)}~16$

Solution

The greatest common divisor of $54$ and $70$ is $2$, so we know that $m$ is either $1$ or $2$. If $m = 1$, then $n$ can be any factor of $70$, so $8$ options. If $m=2$, $n$ can be any factor of $35$, so $4$ options. In total, there are $\boxed{\textbf{(D)}~12}$ ordered pairs.

~joshualiu315

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC logo.png