Difference between revisions of "2024 AMC 12A Problems/Problem 5"
(Added a video solution) |
|||
Line 1: | Line 1: | ||
+ | {{duplicate|[[2024 AMC 12A Problems/Problem 5|2024 AMC 12A #5]] and [[2024 AMC 10A Problems/Problem 7|2024 AMC 10A #7]]}} | ||
+ | |||
==Problem== | ==Problem== | ||
+ | Let <math>M</math> be the midpoint of segment <math>\overline{AB}</math>, and let <math>T</math> lie on segment <math>\overline{AB}</math> so that <math>AT \cdot AM = 100</math> and <math>BT \cdot BM = 28</math>. What is the length of segment <math>\overline{TM}</math>? | ||
− | + | <math>\textbf{(A)}~4\qquad \textbf{(B)}~4.5\qquad \textbf{(C)}~5 \qquad \textbf{(D)}~5.5 \qquad \textbf{(E)}~6</math> | |
− | |||
− | <math>\textbf{(A) }4\qquad\textbf{(B) }5\qquad\textbf{(C) } | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | ~ | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | < | + | ==Solution== |
+ | Note that <math>AM = BM</math>, so <math>\tfrac{AT}{BT} = \tfrac{100}{28} = \tfrac{25}{7}</math>. Thus, let <math>AT = 25x</math> and <math>BT = 7x</math>. Then <math>AM = BM = 16x</math> and <math>TM = 9x</math>. We can now use either of the two conditions presented, WLOG we use the first: <cmath>AT \cdot AM = (25x)(16x) = 400x^{2} = 100 \implies x = 0.5</cmath> Therefore, <math>TM = 9x = \boxed{\textbf{(B)}~4.5}</math>. | ||
− | == See | + | ==See also== |
{{AMC12 box|year=2024|ab=A|num-b=4|num-a=6}} | {{AMC12 box|year=2024|ab=A|num-b=4|num-a=6}} | ||
+ | {{AMC10 box|year=2024|ab=A|num-b=6|num-a=8}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 21:41, 20 March 2025
- The following problem is from both the 2024 AMC 12A #5 and 2024 AMC 10A #7, so both problems redirect to this page.
Problem
Let be the midpoint of segment
, and let
lie on segment
so that
and
. What is the length of segment
?
Solution
Note that , so
. Thus, let
and
. Then
and
. We can now use either of the two conditions presented, WLOG we use the first:
Therefore,
.
See also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 4 |
Followed by Problem 6 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2024 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.