Difference between revisions of "2024 AMC 12A Problems/Problem 5"

(Added a video solution)
Line 1: Line 1:
 +
{{duplicate|[[2024 AMC 12A Problems/Problem 5|2024 AMC 12A #5]] and [[2024 AMC 10A Problems/Problem 7|2024 AMC 10A #7]]}}
 +
 
==Problem==
 
==Problem==
 +
Let <math>M</math> be the midpoint of segment <math>\overline{AB}</math>, and let <math>T</math> lie on segment <math>\overline{AB}</math> so that <math>AT \cdot AM = 100</math> and <math>BT \cdot BM = 28</math>. What is the length of segment <math>\overline{TM}</math>?
  
A data set containing <math>20</math> numbers, some of which are <math>6</math>, has mean <math>45</math>. When all the 6s are removed, the data set has mean <math>66</math>. How many 6s were in the original data set?
+
<math>\textbf{(A)}~4\qquad \textbf{(B)}~4.5\qquad \textbf{(C)}~5 \qquad \textbf{(D)}~5.5 \qquad \textbf{(E)}~6</math>
 
 
<math>\textbf{(A) }4\qquad\textbf{(B) }5\qquad\textbf{(C) }6\qquad\textbf{(D) }7\qquad\textbf{(E) }8</math>
 
 
 
[[2024 AMC 12A Problems/Problem 5|Solution]]
 
 
 
== Solution ==
 
 
 
Because the set has <math>20</math> numbers and mean <math>45</math>, the sum of the terms in the set is <math>45\cdot 20=900</math>.
 
 
 
Let there be <math>s</math> sixes in the set.
 
 
 
Then, the mean of the set without the sixes is <math>\frac{900-6s}{20-s}</math>. Equating this expression to <math>66</math> and solving yields <math>s=7</math>, so we choose answer choice <math>\boxed{\textbf{(D) }7}</math>.
 
 
 
==Solution 2==
 
 
 
Let <math>S</math> be the sum of the data set without the sixes and <math>x</math> be the number of sixes. We are given that <math>\dfrac{S+6x}{20}=45</math> and <math>\dfrac S{20-x}=66</math>; the former equation becomes <math>S+6x=900</math> and the latter <math>S=1320-66x</math>. Since we want <math>x</math>, we equate the two equations and see that <math>900-6x=1320-66x\implies60x=420\implies x=\boxed{\textbf{(D) }7}</math>.
 
 
 
~Technodoggo
 
 
 
==Solution 3==
 
 
 
Suppose there are <math>x</math> sixes. Then the sum of all the numbers can be written as <math>(20-x)\cdot 45+6x</math>
 
 
 
Then, the mean of this set is <math>\frac{(20-x)\cdot 66+6x}{20}=45</math>. Solving this, we get <math>x=\boxed{\textbf{(D) }7}</math>
 
 
 
== Video Solution by Math from my desk ==
 
 
 
https://www.youtube.com/watch?v=E_Cab6NsbUA&t=2s
 
 
 
== Video Solution 1 (⚡️ 1 min solve ⚡️) ==
 
 
 
https://youtu.be/gGoqDf23XEk
 
  
<i>~Education, the Study of Everything</i>
+
==Solution==
 +
Note that <math>AM = BM</math>, so <math>\tfrac{AT}{BT} = \tfrac{100}{28} = \tfrac{25}{7}</math>. Thus, let <math>AT = 25x</math> and <math>BT = 7x</math>. Then <math>AM = BM = 16x</math> and <math>TM = 9x</math>. We can now use either of the two conditions presented, WLOG we use the first: <cmath>AT \cdot AM = (25x)(16x) = 400x^{2} = 100 \implies x = 0.5</cmath> Therefore, <math>TM = 9x = \boxed{\textbf{(B)}~4.5}</math>.
  
== See Also ==
+
==See also==
 
{{AMC12 box|year=2024|ab=A|num-b=4|num-a=6}}
 
{{AMC12 box|year=2024|ab=A|num-b=4|num-a=6}}
 +
{{AMC10 box|year=2024|ab=A|num-b=6|num-a=8}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 21:41, 20 March 2025

The following problem is from both the 2024 AMC 12A #5 and 2024 AMC 10A #7, so both problems redirect to this page.

Problem

Let $M$ be the midpoint of segment $\overline{AB}$, and let $T$ lie on segment $\overline{AB}$ so that $AT \cdot AM = 100$ and $BT \cdot BM = 28$. What is the length of segment $\overline{TM}$?

$\textbf{(A)}~4\qquad \textbf{(B)}~4.5\qquad \textbf{(C)}~5 \qquad \textbf{(D)}~5.5 \qquad \textbf{(E)}~6$

Solution

Note that $AM = BM$, so $\tfrac{AT}{BT} = \tfrac{100}{28} = \tfrac{25}{7}$. Thus, let $AT = 25x$ and $BT = 7x$. Then $AM = BM = 16x$ and $TM = 9x$. We can now use either of the two conditions presented, WLOG we use the first: \[AT \cdot AM = (25x)(16x) = 400x^{2} = 100 \implies x = 0.5\] Therefore, $TM = 9x = \boxed{\textbf{(B)}~4.5}$.

See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC logo.png