Difference between revisions of "2024 AMC 12A Problems/Problem 1"

(Removed redirect to 2024 AMC 10A Problems/Problem 1)
(Tag: Removed redirect)
m (Reverted edits by Maa is stupid (talk) to last revision by Eevee9406)
(Tags: New redirect, Rollback)
 
Line 1: Line 1:
{{duplicate|[[2024 AMC 12A Problems/Problem 1|2024 AMC 12A #1]] and [[2024 AMC 10A Problems/Problem 1|2024 AMC 10A #1]]}}
+
#redirect[[2024 AMC 10A Problems/Problem 1]]
 
 
==Problem==
 
What is the value of <math>9901 \cdot 101 - 99 \cdot 10101</math>?
 
 
 
<math>\textbf{(A)}~2\qquad\textbf{(B)}~20\qquad\textbf{(C)}~200\qquad\textbf{(D)}~202\qquad\textbf{(E)}~2020</math>
 
 
 
== Solution 1 (Direct Computation) ==
 
The likely fastest method will be direct computation. <math>9901 \cdot 101</math> evaluates to <math>1{,}000{,}001</math> and <math>99 \cdot 10101</math> evaluates to <math>999{,}999</math>. The difference is <math>\boxed{\textbf{(A)}~2}</math>.
 
 
 
Solution by [[User:Juwushu|juwushu]].
 
 
 
== Solution 2 (Distributive Property) ==
 
We have
 
<cmath>\begin{align*}
 
9901\cdot101-99\cdot10101 &= (10000-99)\cdot101-99\cdot(10000+101) \
 
&= 10000\cdot101-99\cdot101-99\cdot10000-99\cdot101 \
 
&= (10000\cdot101-99\cdot10000)-2\cdot(99\cdot101) \
 
&= 2\cdot10000-2\cdot9999 \
 
&= \boxed{\textbf{(A) }2}.
 
\end{align*}</cmath>
 
~MRENTHUSIASM
 
 
 
== Solution 3 (Solution 1 but Distributive) ==
 
Note that <math>9901\cdot101=9901\cdot100+9901=990100+9901=1000001</math> and  <math>99\cdot10101=100\cdot10101-10101=1010100-10101=999999</math>, therefore the answer is <math>1000001-999999=\boxed{\textbf{(A) }2}</math>.
 
 
 
~Tacos_are_yummy_1
 
 
 
== Solution 4 (Modular Arithmetic) ==
 
Evaluating the given expression <math>\pmod{10}</math> yields <math>1-9\equiv 2 \pmod{10}</math>, so the answer is either <math>\textbf{(A)}</math> or <math>\textbf{(D)}</math>. Evaluating <math>\pmod{101}</math> yields <math>0-99\equiv 2\pmod{101}</math>. Because answer <math>\textbf{(D)}</math> is <math>202=2\cdot 101</math>, that cannot be the answer, so we choose choice <math>\boxed{\textbf{(A) }2}</math>.
 
 
 
== Solution 5 (Process of Elimination) ==
 
 
 
We simply look at the units digit of the problem we have (or take mod <math>10</math>)
 
<cmath>9901\cdot101-99\cdot10101 \equiv 1\cdot1 - 9\cdot1 = 2 \mod{10}.</cmath>
 
Since the only answer with <math>2</math> in the units digit is <math>\textbf{(A)}</math>, We can then continue if you are desperate to use guess and check or a actually valid method to find the answer is <math>\boxed{\textbf{(A) }2}</math>.
 
 
 
~[[User:Mathkiddus|mathkiddus]]
 
 
 
== Solution 6 (Faster Distribution) ==
 
Observe that <math>9901=9900+1=99\cdot100+1</math> and <math>10101=10100+1=101\cdot100+1</math>
 
<cmath>\begin{align*}
 
\Rightarrow9901\cdot101-99\cdot10101 & = ((9900\cdot101)+(1\cdot101))-((99\cdot10100)+(99\cdot1)) \
 
&=(99\cdot100\cdot101)+101-(99\cdot100\cdot101)-99 \
 
&=101-99 \
 
&=\boxed{\textbf{(A) }2}.
 
\end{align*}</cmath>
 
 
 
~laythe_enjoyer211
 
 
 
==Solution 7 (Cubes)==
 
 
 
Let <math>x=100</math>. Then, we have
 
\begin{align*}
 
101\cdot 9901=(x+1)\cdot (x^2-x+1)=x^3+1, \
 
99\cdot 10101=(x-1)\cdot (x^2+x+1)=x^3-1.
 
\end{align*}
 
Then, the answer can be rewritten as <math>(x^3+1)-(x^3-1)= \boxed{\textbf{(A) }2}.</math>
 
 
 
~erics118
 
 
 
==Solution 8 (Super Fast)==
 
 
 
It's not hard to observe and express <math>9901</math> into <math>99\cdot100+1</math>, and <math>10101</math> into <math>101\cdot100+1</math>.
 
 
 
We then simplify the original expression into <math>(99\cdot100+1)\cdot101-99\cdot(101\cdot100+1)</math>, which could then be simplified into <math>99\cdot100\cdot101+101-99\cdot100\cdot101-99</math>, which we can get the answer of <math>101-99=\boxed{\textbf{(A) }2}</math>.
 
 
 
~RULE101
 
 
 
== Video Solution (⚡️ 1 min solve ⚡️) ==
 
 
 
https://youtu.be/RODYXdpipdc
 
 
 
<i>~Education, the Study of Everything </i>
 
 
 
== Video Solution by Pi Academy ==
 
https://youtu.be/GPoTfGAf8bc?si=JYDhLVzfHUbXa3DW
 
 
 
== Video Solution by FrankTutor ==
 
https://www.youtube.com/watch?v=ez095SvW5xI
 
 
 
== Video Solution Daily Dose of Math ==
 
 
 
https://youtu.be/Z76bafQsqTc
 
 
 
~Thesmartgreekmathdude
 
 
 
== Video Solution 1 by Power Solve ==
 
https://www.youtube.com/watch?v=j-37jvqzhrg
 
 
 
==Video Solution by SpreadTheMathLove==
 
https://www.youtube.com/watch?v=6SQ74nt3ynw
 
 
 
==Video Solution by Math from my desk ==
 
https://www.youtube.com/watch?v=n_G6wi1ulzY
 
 
 
==See also==
 
{{AMC12 box|year=2024|ab=A|before=First Problem|num-a=2}}
 
{{AMC10 box|year=2024|ab=A|before=First Problem|num-a=2}}
 
{{MAA Notice}}
 

Latest revision as of 18:57, 21 March 2025