Difference between revisions of "2024 AMC 12A Problems/Problem 3"

(Undo revision 245632 by Maa is stupid (talk))
(Tags: New redirect, Undo)
m (Reverted edits by Jlacosta (talk) to last revision by Maa is stupid)
(Tags: Removed redirect, Rollback)
Line 1: Line 1:
#redirect[[2024 AMC 10A Problems/Problem 4]]
+
{{duplicate|[[2024 AMC 12A Problems/Problem 3|2024 AMC 12A #3]] and [[2024 AMC 10A Problems/Problem 4|2024 AMC 10A #4]]}}
 +
 
 +
==Problem==
 +
A square and an isosceles triangle are joined along an edge to form a pentagon <math>10</math> inches tall and <math>22</math> inches wide, as shown below. What is the perimeter of the pentagon, in inches?
 +
 
 +
<asy>
 +
import graph; size(7cm);
 +
real labelscalefactor = 0.5; /* changes label-to-point distance */
 +
pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
 +
pen dotstyle = black; /* point style */
 +
pen GGG = grey;
 +
draw((10, 0)--(0, 0)--(0, 10)--(10, 10));
 +
draw((10, 0)--(10, 10), dashed);
 +
draw((10, 0)--(22, 5)--(10, 10));
 +
draw((-1.5, 0)--(-1.5, 10), arrow = ArcArrow(SimpleHead), GGG);
 +
draw((-1.5, 10)--(-1.5, 0), arrow = ArcArrow(SimpleHead), GGG);
 +
draw((0, 11.5)--(22, 11.5), arrow = ArcArrow(SimpleHead), GGG);
 +
draw((22, 11.5)--(0, 11.5), arrow = ArcArrow(SimpleHead), GGG);
 +
label("$10$ in.", (-3.5, 5), GGG);
 +
label("$22$ in.", (11, 12.75), GGG);
 +
dot((0, 0));
 +
dot((0, 10));
 +
dot((10, 10));
 +
dot((10, 0));
 +
dot((22, 5));
 +
</asy>
 +
 
 +
<math>\textbf{(A)}~54\qquad \textbf{(B)}~56 \qquad \textbf{(C)}~62 \qquad \textbf{(D)}~64 \qquad \textbf{(E)}~66</math>
 +
 
 +
==Solution==
 +
Drop an altitude from the vertex of the isosceles triangle to the midpoint of the base, thereby creating two right triangles whose legs are <math>\tfrac{10}{2} = 5</math> and <math>22 - 10 = 12</math>. It follows that the two congruent sides have length <math>13</math>, hence, the perimeter of the pentagon is <math>3 \cdot 10 + 2 \cdot 13 = 30 + 26 = \boxed{\textbf{(B)}~56}</math>.
 +
 
 +
==See also==
 +
{{AMC12 box|year=2024|ab=A|num-b=2|num-a=4}}
 +
{{AMC10 box|year=2024|ab=A|num-b=3|num-a=5}}
 +
{{MAA Notice}}

Revision as of 19:02, 21 March 2025

The following problem is from both the 2024 AMC 12A #3 and 2024 AMC 10A #4, so both problems redirect to this page.

Problem

A square and an isosceles triangle are joined along an edge to form a pentagon $10$ inches tall and $22$ inches wide, as shown below. What is the perimeter of the pentagon, in inches?

[asy] import graph; size(7cm); real labelscalefactor = 0.5; /* changes label-to-point distance */ pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */ pen dotstyle = black; /* point style */ pen GGG = grey; draw((10, 0)--(0, 0)--(0, 10)--(10, 10)); draw((10, 0)--(10, 10), dashed); draw((10, 0)--(22, 5)--(10, 10)); draw((-1.5, 0)--(-1.5, 10), arrow = ArcArrow(SimpleHead), GGG); draw((-1.5, 10)--(-1.5, 0), arrow = ArcArrow(SimpleHead), GGG); draw((0, 11.5)--(22, 11.5), arrow = ArcArrow(SimpleHead), GGG); draw((22, 11.5)--(0, 11.5), arrow = ArcArrow(SimpleHead), GGG); label("$10$ in.", (-3.5, 5), GGG); label("$22$ in.", (11, 12.75), GGG); dot((0, 0)); dot((0, 10)); dot((10, 10)); dot((10, 0)); dot((22, 5)); [/asy]

$\textbf{(A)}~54\qquad \textbf{(B)}~56 \qquad \textbf{(C)}~62 \qquad \textbf{(D)}~64 \qquad \textbf{(E)}~66$

Solution

Drop an altitude from the vertex of the isosceles triangle to the midpoint of the base, thereby creating two right triangles whose legs are $\tfrac{10}{2} = 5$ and $22 - 10 = 12$. It follows that the two congruent sides have length $13$, hence, the perimeter of the pentagon is $3 \cdot 10 + 2 \cdot 13 = 30 + 26 = \boxed{\textbf{(B)}~56}$.

See also

2024 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png